Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of sodium–proton exchange is a prerequisite for Ca2+ mobilization in human platelets

Abstract

Stimulated platelets take up sodium ions1,2 and release hydrogen ions3 due to activation of Na+/H+ exchange4,5 resulting in cytoplasmic alkalinization6. Suppression of Na+/H+ exchange either by removal of extracellular Na+ or by application of amiloride inhibits shape change, secretion of granule contents and aggregation5,7–9. The data we present here indicate that inhibition of this transport by ethylisopropyl-amiloride or by lowering extracellular sodium reduces or even completely suppresses the rise in cytoplasmic free Ca2+ concentration that is essential for platelet aggregation in response to thrombin. We also demonstrate that cytoplasmic alkalinization produced by exposure to the ionophore monensin sensitizes the human platelet response to stimulation by thrombin resulting in enhanced Ca2+ mobilization and aggregability. We conclude that an increase in intracellular pH evoked by activation of Na+/H+ counter transport is an important signal in stimulus–response coupling and forms an essential step in the cascade of events required to increase cytoplasmic free Ca2+ in platelets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Feinberg, H. et al. Biochim. biophys. Acta 470, 317–324 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Sandler, W. C., Le Breton, G. C. & Feinberg, H. Biochim. biophys. Acta 600, 448–455 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Akkerman, J. W. N. & Holmsen, H. Blood 57, 956–966 (1981).

    CAS  PubMed  Google Scholar 

  4. Siffert, W., Fox, G., Mückenhoff, K. & Scheid, P. FEBS Lett. 172, 272–274 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Siffert, W., Mückenhoff, K. & Scheid, P. Biochem. biophys. Res. Commun. 125, 1123–1128 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Horne, W. C., Norman, N. E., Schwartz, D. B. & Simons, E. R. Bur. J. Biochem. 120, 295–302 (1981).

    CAS  Google Scholar 

  7. Horne, W. C. & Simons, E. R. Thromb. Res. 13, 599–607 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Connolly, T. M. & Limbird, L. E. Proc. natn. Acad. Sci. U.S.A. 80, 5320–5324 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Leven, R. M., Gonnella, P. A., Reeber, M. J. & Nachmias, V. T. Thromb. Haemostas. 49, 230–234 (1983).

    CAS  Google Scholar 

  10. Berridge, M. J. Biochem. J. 220, 345–360 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Macara, I. G. Am. J. Physiol. 248, C3–C11 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Busa, W. B. & Nuccitelli, R. Am. J. Physiol. 246, R409–R438 (1984).

    CAS  PubMed  Google Scholar 

  14. Nuccitelli, R. & Deamer, D. W. intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions (Liss, New York, 1982).

    Google Scholar 

  15. Brass, L. F. J. biol. Chem. 259, 12571–12575 (1984).

    CAS  PubMed  Google Scholar 

  16. Vigne, P., Frelin, C., Cragoe, E. J. & Lazdunski, M. Biochem. biophys. Res. Commun. 116, 86–90 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Aronson, P. S. A. Rev. Physiol. 47, 545–560 (1985).

    Article  CAS  Google Scholar 

  18. Agranoff, B. W., Murthy, P. & Seguin, P. J. biol. Chem. 258, 2076–2078 (1983).

    CAS  PubMed  Google Scholar 

  19. Kawahara, Y., Takai, Y., Minakuchi, R., Sano, K. & Nishizuka, Y. Biochem. biophys. Res. Commun. 97, 309–317 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Streb, H., Irvine, R. F., Berridge, M. J. & Schulz, I. Nature 306, 67–68 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. O'Rourke, F. A., Halenda, S. P., Zavoico, G. B. & Feinstein, M. B. J. biol. Chem. 260, 956–962 (1985).

    CAS  PubMed  Google Scholar 

  22. Adunjah, S. E. & Dean, W. L. Biochem. biophys. Res. Commun. 128, 1274–1280 (1985).

    Article  Google Scholar 

  23. Authi, K. S. & Crawford, N. Biochem. J. 230, 247–253 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rink, T. J., Sanchez, A. & Hallam, T. J. Nature 305, 317–319 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Brass, L. F. & Joseph, K. J. biol. Chem. 260, 15172–15179 (1985).

    CAS  PubMed  Google Scholar 

  26. Tsien, R. Y., Pozzan, I. & Rink, T. J. J. cell Biol. 94, 325–334 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Born, G. V. R. Nature 194, 927–929 (1962).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siffert, W., Akkerman, J. Activation of sodium–proton exchange is a prerequisite for Ca2+ mobilization in human platelets. Nature 325, 456–458 (1987). https://doi.org/10.1038/325456a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325456a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing