Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tissue-specific expression of three distinct types of rabbit protein kinase C

Abstract

We examined the structure of protein kinase C in an attempt to understand the molecular events connecting protein kinase C activation with the cellular response 1–3. Rabbit complementary DNA clones coding for three distinct types of protein kinase C, named α, β and γ, have been identified and sequenced. The deduced amino acid sequence for α, β and γ (673, 671 and 672 amino acids, respectively) are closely related. Kinases α and β share an identical TV-terminal sequence of 621 amino acid residues and their messenger RNAs arise from a single gene. The C-terminal halves of α, β and γ are protein kinase domains and are highly homologous to other protein kinases. The mRNAs for α, β and γ are expressed in various tissues with strikingly different tissue specificities. The one for γ is found ubiquitously among various tissues, while those for α and β predominate in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Nishizuka, Y. Science 233, 305–312 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Nature 298, 240–244 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  6. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S. & Nishizuka, Y. J. biol. Chem. 257, 13341–13348 (1982).

    CAS  PubMed  Google Scholar 

  7. Shoji, S., Ericsson, L. H., Walsh, K. A., Fischer, E. H. & Titani, K. Biochemistry 22, 3703–3709 (1983).

    Article  Google Scholar 

  8. Takio, K. et al. Biochemistry 23, 4207–4218 (1984).

    Article  CAS  Google Scholar 

  9. Takeya, T. & Hanafusa, H. Cell 32, 881–890 (1983).

    Article  CAS  Google Scholar 

  10. Ullrich, A. et al. Nature 309, 418–425 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Baker, W. C. & Dayhoff, M. O. Proc. natn. Acad. Sci. U.S.A. 79, 2836–2839 (1982).

    Article  ADS  Google Scholar 

  12. Hunter, T. & Cooper, J. A. Rev. Biochem. 54, 879–930 (1985).

    Article  Google Scholar 

  13. Kamps, M. P., Taylor, S. S. & Sefton, B. M. Nature 310, 589–592 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Snyder, M. A., Bishop, J. M., McGrath, J. P. & Levinson, A. D. Molec. Cell Biol. 5, 1772–1779 (1985).

    Article  CAS  Google Scholar 

  15. Brugge, J. S. & Darrow, D. J. biol. Chem. 259, 4550–4557 (1984).

    CAS  PubMed  Google Scholar 

  16. Kishimoto, A., Najikawa, N. & Nishizuka, Y. J. biol. Chem. 258, 1156–1164 (1983).

    CAS  PubMed  Google Scholar 

  17. Ohno, S. et al. Nature 312, 566–570 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Tufty, R. H. & Kretsinger, R. H. Science 187, 167–169 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Geisow, M. J., Fritsche, U., Hexham, J. M., Dash, B. & Johnson, T. Nature 320, 636–638 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Weinberger, C., Hollenberg, S. M., Rosenfeld, M. G. & Evans, R. M. Nature 318, 670–672 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Greene, G. L. et al. Science 231, 1150–1154 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Wolf, M., LeVine, H. III, May, W. S. Jr, Cuatrecasas, P. & Sahyoun, N. Nature 317, 546–549 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Inagaki, M., Watanabe, M. & Hidaka, H. J. biol. Chem. 260, 2922–2925 (1985).

    CAS  PubMed  Google Scholar 

  24. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  25. Gubler, U. & Hoffman, B. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  26. Huynh, T. V., Young, R. A. & Davis, R. W. in DNA cloning Vol.1 (ed. Glover, D. M.) 49–78 (IRL, Oxford, 1985).

    Google Scholar 

  27. Birnstiel, M. L., Busslinger, M. & Strub, K. Cell 41, 349–359 (1985).

    Article  CAS  Google Scholar 

  28. Feinberg, A. P. & Vogelstein, B. Analyt. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, S., Kawasaki, H., Imajoh, S. et al. Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature 325, 161–166 (1987). https://doi.org/10.1038/325161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing