Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones

Abstract

Protein phosphorylation catalysed by cyclic AMP-dependent1,2, Ca2+/calmodulin-dependent3 and Ca2+/diacylglycerol-dependent4 protein kinases is important both in the modulation of synaptic transmission and in the regulation of neuronal membrane permeability (for reviews see refs 5–7). However, there has previously been no evidence for the involvement of cyclic GMP-dependent protein kinase (cGMP-PK) in the regulation of neuronal function. Serotonin induces an increase of Ca2+ current in a group of identified ventral neurones of the snail Helix aspersa8 This effect is probably mediated by cGMP because it is mimicked by the intracellular injection of cGMP or the application of zaprinast8, an inhibitor of cGMP-dependent phosphodiesterase9. We have now found that the effect of either serotonin or zaprinast on the Ca2+ current is potentiated by the intracellular injection of cGMP-PK. Moreover, the intracellular injection of activated cGMP-PK (CGMP–PK+1 µM cGMP) greatly enhances the Ca2+ current of the identified ventral neurones seen in the absence of serotonin. These results indicate that cGMP-PK has a physiological role in the control of the membrane permeability of these neurones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaczmarek, L. K. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7487–7491 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Castellucci, V. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 7492–7496 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 82, 3035–3039 (1985).

    Article  ADS  CAS  Google Scholar 

  4. DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P. & Kaczmarek, L. K. Nature 313, 313–316 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Nestler, E. J. & Greengard, P. Nature 305, 583–588 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Nairn, A. C., Hemmings, Jr, H. C. & Greengard, P. A. Rev. Biochem. 54, 931–976 (1985).

    Article  CAS  Google Scholar 

  7. Levitan, I. B. J. Membrane Biol. 87, 177–190 (1985).

    Article  CAS  Google Scholar 

  8. Paupardin-Tritsch, D., Hammond, C. & Gerschenfeld, H. M. J. Neurosci. 6, 2715–2723 (1986).

    Article  CAS  Google Scholar 

  9. Winquist, R. J. et al. Proc. natn. Acad. Sci U.S.A. 81, 7661–7664 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Osterrieder, W. et al. Nature 298, 576–578 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Brum, G., Flockerzi, V., Hofman, F., Osterrieder, W. & Trautwein, W. Pflügers Arch. ges. Physiol. 398, 146–154 (1983).

    Article  Google Scholar 

  12. Ewald, D. A., Williams, A. & Levitan, I. B. Nature 315, 503–506 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Nature 313, 310–313 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Haynes, L. W. & Yau, K.-W. Nature 317, 61–64 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Haynes, L. W., Kay, A. R. & Yau, K.-W. Nature 321, 66–70 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Zimmerman, A. L. & Baylor, D. A. Nature 321, 70–72 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Walter, Y., Miller, P., Wilson, F., Menkes, D. & Greengard, P. J. biol. Chem. 255, 3757–3762 (1980).

    CAS  PubMed  Google Scholar 

  18. Kostyuk, P. G. Neuroscience 5, 945–959 (1980).

    Article  CAS  Google Scholar 

  19. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paupardin-Tritsch, D., Hammond, C., Gerschenfeld, H. et al. cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323, 812–814 (1986). https://doi.org/10.1038/323812a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323812a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing