Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is the 1.5-ms pulsar a young neutron star?

Abstract

The 1.5-ms pulsar PSR1937+214 is an unusual object; its extremely short period and slow spin-down rate imply a magnetic field1 of 4×108 G, much lower than that of a canonical pulsar. Contrary to previous models, we propose here, as an explanation for these properties, that PSR1937+214 is a young neutron star (consistent with a kinematic age of 106 yr) spun up by accretion from a high-mass companion in a close binary system. The supercritical mass transfer rates expected in such a binary system should allow the neutron star to be spun up in the comparatively short time of 104 yr. The accretion process will also power thermomagnetic effects that could remove the strong magnetic field of a young pulsar from the crust of the star in a similarly short timescale. Such a high-mass binary system is expected to disrupt when the companion explodes in a supernova. Thus a spin-up model in a high-mass system can explain the lack of a companion, low magnetic field, and high spin rate of PSR1937+214.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Backer, D. C., Kulkarni, S. R. & Taylor, J. H. Nature 301, 314–315 (1983).

    Article  ADS  Google Scholar 

  2. Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M. & Gross, W. M. Nature 300, 615–618 (1982).

    Article  ADS  Google Scholar 

  3. Boriakoff, V., Buccheri, R. & Fauci, F. Nature 304, 417–419 (1983).

    Article  ADS  Google Scholar 

  4. Segelstein, D. J., Taylor, J. H., Rawley, I. A. & Stinebrin, D. R. IAU Circ. No. 4162 (1986).

  5. Stokes, G. H., Taylor, J. H., Weisberg, J. M. & Dewey, R. J. Nature 317, 787–788 (1985).

    Article  ADS  Google Scholar 

  6. Clifton, T. R. & Lyne, A. G. Nature 320, 43–45 (1986).

    Article  ADS  Google Scholar 

  7. Manchester, R. N. & Taylor, J. H. in Pulsars (Freeman, San Francisco, 1977).

    Google Scholar 

  8. Ostriker, J. P. & Gunn, J. E. Astrophys. J. 157, 1395–1417 (1969).

    Article  ADS  Google Scholar 

  9. Alpar, M. A., Cheng, A. F., Rudermann, M. A. & Shaham, J. Nature 300, 728–730 (1982).

    Article  ADS  Google Scholar 

  10. Rudermann, M. A. & Shaham, J. Astrophys. J. 289, 244–246 (1985).

    Article  ADS  Google Scholar 

  11. Jeffrey, L. C. Nature 319, 384–386 (1986).

    Article  ADS  CAS  Google Scholar 

  12. van den Heuvel, E. P. J. & Bonsema, P. F. J. Astr. Astrophys. 139, L16–L18 (1984).

    ADS  Google Scholar 

  13. Brecher, K. & Chanmugan, G. Nature 302, 124–125 (1983).

    Article  ADS  Google Scholar 

  14. Arons, J. Nature 302, 301–305 (1983).

    Article  ADS  Google Scholar 

  15. Blandford, R. D., Applegate, J. H. & Hernquist, L. Mon. Not. R. astr. Soc. 204, 1025 (1983).

    Article  ADS  CAS  Google Scholar 

  16. van den Heuvel, E. P. J. & DeLoore, C. Astr. Astrophys. 25, 387–395 (1973).

    ADS  Google Scholar 

  17. Begelman, M. C. & Rees, M. J. Mon. Not. R. astr. Soc. 206, 209 (1984).

    Article  ADS  Google Scholar 

  18. Königl, A. Mon. Not. R. astr. Soc. 205, 471–485 (1983).

    Article  ADS  Google Scholar 

  19. van den Heuvel, E. P. J. Vistas Astr. 25, 95–108 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Ayasli, S. & Joss, P. C. Astrophys. J. 256, 637–665 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Fujimoto, M. Y., Hanawa, T., Iben, I. & Richardson, M. B. Astrophys. J. 278, 813–824 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Hernquist, L. & Applegate, J. H. Astrophys. J. 287, 244–254 (1984).

    Article  ADS  Google Scholar 

  23. Urpin, V. A. & Yakovlev, D. G. Soviet Astr. 24, 425–431 (1980).

    ADS  Google Scholar 

  24. van den Heuvel, E. P. J. in Accretion-Driven Stellar X-ray Sources (eds Lewin, W. H. G. & van den Heuvel, E. P. J.) 303–341 (Cambridge University Press, 1984).

    Google Scholar 

  25. Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Astrophys. J. 222, 269–280 (1978).

    Article  ADS  CAS  Google Scholar 

  26. van den Heuvel, E. P. J., van Paradijs, J. A. & Taam, R. E. Nature 322, 153–155 (1986).

    Article  ADS  Google Scholar 

  27. Kulkarni, S. R. Astrophys. J. 306, L85–L89 (1986).

    Article  ADS  CAS  Google Scholar 

  28. van den Heuvel, E. P. J. & Taam, R. E. Nature 309, 235–237 (1984).

    Article  ADS  Google Scholar 

  29. van der Linden, T. J. IAU Symp. No. 88, 109–120 (1980).

  30. deKool, M., van den Jeuvel, E. P. J. & Rappaport, S. A. Astr. Astrophys. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blondin, J., Freese, K. Is the 1.5-ms pulsar a young neutron star?. Nature 323, 786–788 (1986). https://doi.org/10.1038/323786a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323786a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing