Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones

Abstract

Cell–cell adhesion is essential for many immunological functions1–4, including interaction of cytotoxic T lymphocytes (CTLs) with their targets5–8. We have explored CTL-target interactions using well-characterized cloned human CTLs9,10. Conjugate formation between these CTLs and many antigen-negative targets is almost as efficient as with specific target cells, but does not lead to target-cell lysis. Thus, on specific target cells, adhesion by antigen-independent pathways may occur concurrently with or precede antigen recognition. The molecules LFA-1, CD2 (Til, LFA-2) and LFA-3 have been shown11–15 to be involved in human CTL conjugation with and lysis of specific target cells. Here we describe monoclonal antibody inhibition studies using individual monoclonal antibodies and mixes which demonstrate (1) that LFA-1, CD2 and LFA-3 are involved in antigen-independent conjugate formation; and (2) suggest that CD2 and LFA-3 are involved in one pathway and LFA-1 in another. We confirmed the existence of distinct pathways by the demonstration that LFA-1-dependent adhesion requires divalent cations and is temperature-sensitive whereas CD2- and LFA-3-dependent adhesion does not require divalent cations and is temperature-insensitive. Together with previous data, our studies suggest that CD2 on the effector interacts with LFA-3 as its ligand on targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rouse, R. V., Reichert, R. A., Gallatin, W. M., Weissman, I. L. & Butcher, E. C. Am. J. Anat. 170, 391–405 (1984).

    Article  CAS  Google Scholar 

  2. Bjerknes, M., Cheng, H. & Ottaway, C. A. Science 231, 402–405 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Bell, G. I. Immun. Today 4, 237–240 (1983).

    Article  CAS  Google Scholar 

  4. Inaba, K. & Steinman, R. M. J. exp. Med. 163, 247–261 (1986).

    Article  CAS  Google Scholar 

  5. Berke, G. Prog. Allergy 27, 69–133 (1980).

    CAS  PubMed  Google Scholar 

  6. Bongrand, P., Pierres, M. & Golstein, P. Eur. J. Immun. 13, 424–429 (1983).

    Article  CAS  Google Scholar 

  7. Martz, E. Contemp. Top. Immunobiol. 7, 301–361 (1977).

    Article  CAS  Google Scholar 

  8. Bonavida, B., Bradley, T. P. & Grimm, E. A. Immun. Today 4, 196–200 (1983).

    Article  CAS  Google Scholar 

  9. Biddison, W. E., Rao, P. E., Talle, M. A., Goldstein, G. & Shaw, S. J. exp. Med. 159, 783–797 (1984).

    Article  CAS  Google Scholar 

  10. Shaw, S., Goldstein, G., Springer, T. A. & Biddison, W. E. J. Immun. 134, 3019–3026 (1985).

    CAS  PubMed  Google Scholar 

  11. Krensky, A. M. et al. J. Immun. 131, 611–616 (1983).

    CAS  PubMed  Google Scholar 

  12. Sanchez-Madrid, F. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7489–7493 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Hildreth, J. E., Gotch, F. M., Hildreth, P. D. & McMichael, A. J. Eur. J. Immun. 13, 202–208 (1983).

    Article  CAS  Google Scholar 

  14. Martin, P. J. et al. J. Immun. 131, 180–185 (1983).

    CAS  PubMed  Google Scholar 

  15. Krensky, A. M., Robbins, E., Springer, T. A. & Burakoff, S. J. J. Immun. 132, 2180–2182 (1984).

    CAS  PubMed  Google Scholar 

  16. Shaw, S., Kavathas, P., Pollack, M. S., Charmot, D. & Mawas, C. Nature 293, 745–747 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Luce, G. G., Gallop, P. M., Sharrow, S. O. & Shaw, S. BioTechniques 3, 270–272 (1985).

    Google Scholar 

  18. Segal, D. M. & Stephany, D. A. Cytometry 5, 169–181 (1984).

    Article  CAS  Google Scholar 

  19. Springer, T. A., Thompson, W. S., Miller, L. J., Schmalstieg, F. C. & Anderson, D. C. J. exp. Med. 160, 1901–1918 (1984).

    Article  CAS  Google Scholar 

  20. Goldstein, M., Hoxie, J., Zembryki, D., Matthews, D. & Levinson, A. I. Blood 66, 444–446 (1985).

    CAS  PubMed  Google Scholar 

  21. Hamann, A., Jablonski-Westrich, D., Raedler, A. & Thiele, H. G. Cell. Immun. 86, 14–32 (1984).

    Article  CAS  Google Scholar 

  22. Galili, U., Galili, N., Vanky, F. & Klein, E. Proc. natn. Acad. Sci. U.S.A. 75, 2396–2400 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Van de Rijn, M. et al. Science 226, 1083–1085 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Barbosa, J. A. et al. Proc. natn. Acad. Sci. U.S.A. 81, 7549–7553 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Spits, H. et al. Science 403–405 (1986).

  26. Martz, E. J. Cell Biol. 84, 584–598 (1980).

    Article  CAS  Google Scholar 

  27. Wolf, L. S., Tuck, D. T., Springer, T. A., Haynes, B. F. & Singer, K. H. Clin. Res. 34, 674A (1986).

    Google Scholar 

  28. Edelman, G. M. A. Rev. Biochem. 54, 135–169 (1985).

    Article  CAS  Google Scholar 

  29. Gromkowski, S. H., Krensky, A. M., Martz, E. & Burakoff, S. J. J. Immun. 134, 244–249 (1985).

    CAS  PubMed  Google Scholar 

  30. Golde, W. T., Kappler, J. W., Greenstein, J., Malissen, B., Hood, L. & Marrack, P. J. exp. Med. 161, 635–640 (1985).

    Article  CAS  Google Scholar 

  31. Rothlein, R. & Springer, T. A. J. exp. Med. 163, 1132–1149 (1986).

    Article  CAS  Google Scholar 

  32. Shaw, S., Duquesnoy, R. J. & Smith, P. L. Immunogenetics 14, 153–162 (1981).

    Article  CAS  Google Scholar 

  33. Kirchner, H., Tosato, G., Blaese, M., Broder, S. & Magrath, I. T. J. Immun. 122, 1310–1313 (1979).

    CAS  PubMed  Google Scholar 

  34. Hildreth, J. E. K. & August, J. T. J. Immun. 134, 3272–3280 (1985).

    CAS  PubMed  Google Scholar 

  35. Rubin, L. A., Kurman, C. C., Biddison, W. E., Goldman, N. D. & Nelson, D. L. Hybridoma. 4, 91–102 (1985).

    Article  CAS  Google Scholar 

  36. Rothbein, R., Dustin, M. L., Marlin, S. D., Springer, T. A. J. Immun. 137, 1270–1274 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, S., Ginther Luce, G., Quinones, R. et al. Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature 323, 262–264 (1986). https://doi.org/10.1038/323262a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323262a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing