Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast carotenoid to pheophorbide energy transfer in a biomimetic model for antenna function in photosynthesis

Abstract

Carotenoids serve as light-harvesting pigments and as photoprotective agents in photosynthetic organisms1–9. Their role as antenna pigments involves absorption of photons in the blue-green spectral region followed by highly efficient singlet–singlet energy transfer to a neighbouring chlorophyll. The dependence of both the rate and mechanism of energy transfer on carotenoid–chlorophyll distance and orientation is Unknown. Here, we have directly measured both the rate and efficiency of singlet energy transfer from a carotenoid covalently linked to pyropheophorbide a (PPheo a) in two model compounds, using picosecond transient absorption spectroscopy. In one model the π systems of the carotenoid and PPsheo a possess a maximum edge-to-edge distance of 5 Å, while in the other model this distance is only 2Å. Energy transfer occurs from the carotenoid to PPheo a at the 2-Å distance with a rate constant of 7 ± 2 × 1010 s−1 and 53±5% efficiency, while energy transfer at the 5-Å distance occurs at a rate constant of <3 ×109 s−1 and with <5% efficiency. These results provide evidence that short distances and strong electronic interactions between carotenoids and chlorophylls are necessary to achieve the high energy transfer efficiencies observed in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Griffiths, M., Sistrom, W. R., Cohen-Bazire, G. & Stanier, R. Y. Nature 176, 1211–1214 (1955).

    Article  ADS  CAS  Google Scholar 

  2. Cohen-Bazire, G. & Stanier, R. Y. Nature 181, 250–252 (1958).

    Article  ADS  CAS  Google Scholar 

  3. Wolff, Ch. & Witt, H. T. Z. Naturf. 24b, 1031–1037 (1969).

    Article  CAS  Google Scholar 

  4. Monger, T. G., Cogdell, R. J. & Parson, W. W. Biochim. biophys. Acta 449, 136–153 (1976).

    Article  CAS  Google Scholar 

  5. Goodwin, T. W. in Chemistry and Biochemistry of Plant Pigments Vol. 1 (ed. Goodwin, T. W.) 228 (Academic, London, 1976).

    Google Scholar 

  6. Mathis, P., Butler, W. L. & Satoh, K. Photochem. Photobiol. 30, 603–614 (1979).

    Article  CAS  Google Scholar 

  7. Cogdell, R. J., Hipkins, M. F., MacDonald, W. & Truscott, T. G. Biochim. biophys. Acta 634, 191–202 (1981).

    Article  CAS  Google Scholar 

  8. van Grondelle, R., Kramer, H. J. M. & Rijgersberg, C. P. Biochim. biophys. Acta 682, 208–215 (1982).

    Article  Google Scholar 

  9. Siefermann-Harms, D. Biochim. biophys. Acta 811, 325–355 (1985).

    Article  CAS  Google Scholar 

  10. Wasielewski, M. R. & Kispert, L. D. Chem. phys. Lett. (in the press).

  11. Razi Naqvi, K. Photochem. Photobiol. 31, 523–524 (1980).

    Article  CAS  Google Scholar 

  12. Dirks, G., Moore, A. L., Moore, T. A. & Gust, D. Photochem. Photobiol. 32, 277–280 (1980).

    Article  CAS  Google Scholar 

  13. Moore, A. L., Dirks, G., Gust, D. & Moore, T. A. Photochem. Photobiol. 32, 691–696 (1980).

    Article  CAS  Google Scholar 

  14. Bensasson, R. V. et al. Nature 290, 329–332 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Grinvald, A. Analyt. Biochem. 75, 260–280 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasielewski, M., Liddell, P., Barrett, D. et al. Ultrafast carotenoid to pheophorbide energy transfer in a biomimetic model for antenna function in photosynthesis. Nature 322, 570–572 (1986). https://doi.org/10.1038/322570a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322570a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing