Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate

Abstract

The evolution of altruism, cooperation and sociality should be favoured by mechanisms promoting interactions among relatives1,2. In turn, the opportunity for such interactions should be enhanced where related individuals are spatially associated. The simplest explanation for association of kin invokes philopatric, or limited, dispersal3. Alternatively, kin recognition—which is known from a broad array of taxa4,5—can produce similar associations. Neither the prevalence of kin recognition, nor aggregations of kin, are by themselves sufficient to demonstrate that kin recognition plays an important role in the production of nonrandom associations of relatives. To have such a role, kin recognition must promote or inhibit associations of kin beyond the effects of other processes, notably dispersal, that modify spatial patterns. Here we report the results of field experiments showing that sibling planktonic larvae of the sessile colonial ascidian Botryllus schlosseri settle in aggregations that are much stronger than expected from dispersal distance effects alone. Laboratory experiments indicate that larvae distinguish kin on the basis of shared alleles at a highly polymorphic histocompatibility locus known to regulate fusion between adult colonies. This kin recognition mechanism, along with limited dispersal of larvae, promotes co-settlement of histocompatible individuals. Consequently, the probability of fusion between adult colonies is far greater than that expected if larvae settled randomly

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamilton, W. D. J. theor. Biol. 7, 1–51 (1964).

    Article  CAS  Google Scholar 

  2. Holmes, W. G. & Sherman, P. W. Am. Zool. 22, 491–517 (1982).

    Article  Google Scholar 

  3. Shields, W. J., Inbreeding and the Evolution of Sex (State University of New York Press, Albany, 1982).

    Google Scholar 

  4. Sherman, P. W. & Holmes, W. G. Fortschr. Zool. 31, 437–459 (1985).

    Google Scholar 

  5. Keough, M. J. Evolution 38, 142–147 (1984).

    Article  Google Scholar 

  6. van Duyl, F. C., Bak, R. P. M. & Sybesma, J. Mar. Ecol. Prog. Ser. 6, 35–42 (1981).

    Article  ADS  Google Scholar 

  7. Olson, R. R. Ecology 66, 30–39 (1985).

    Article  Google Scholar 

  8. Jackson, J. B. C. in Population Biology and Evolution of Clonal Organisms (eds Jackson, J. B. C., Buss, L. W. & Cook, R. E.) 297–356 (Yale University Press, New Haven, 1986).

    Book  Google Scholar 

  9. Jackson, J. B. C. J. mar. Res. (in the press).

  10. Kott, P. Proc. 2nd int. Coral ReefSymp. 1, 405–423 (1974).

    Google Scholar 

  11. Grave, C. & Woodbridge, H. J. Morph. Physiol 39, 207–247 (1924).

    Article  Google Scholar 

  12. Clark, P. J. & Evans, F. C. Ecology 35, 445–453 (1954).

    Article  Google Scholar 

  13. Simberloff, D. S. 60, 679–685 (1979).

  14. Efron, B. & Gong, G. Am. Statistn 37, 36–48 (1983).

    Google Scholar 

  15. Bancroft, F. W. Proc. Calif. Acad. Sci. 3, 138–186 (1903).

    Google Scholar 

  16. Oka, H. & Watanabe, H. Bull. biol. Stn Asamushi 10, 153–155 (1960).

    Google Scholar 

  17. Sabbadin, A. Atti. Accad. naz. Lincei Rc. 32, 1031–1035 (1962).

    Google Scholar 

  18. Mukai, H. & Watanabe, H. Proc. Japan Acad. 51, 44–47 (1975).

    Article  Google Scholar 

  19. Karakashian, S. & R. Biol Bull. 133, 473 (1967).

    Google Scholar 

  20. Curtis, A. S. G., Kerr, J. & Knowlton, N. Transplantation 33, 116–123 (1982).

    Article  Google Scholar 

  21. Bak, R. P. M., Sybesma, J. & van Duyl, F. C. Mar. Ecol. Prog. Ser. 6, 43–52 (1981).

    Article  ADS  Google Scholar 

  22. Russ, G. R. Oecologia 53, 12–19 (1982).

    Article  ADS  Google Scholar 

  23. Reiswig, H. R. Bull. mar. Sci. 23, 191–226 (1973).

    Google Scholar 

  24. Fry, W. G. in 4th Eur. mar. biol Symp. (ed. Crisp, D. J.) 155–178 (Cambridge University Press, 1971).

  25. Highsmith, R. C., Riggs, A. C. & D'Antonio, C. A. Oecologia 46, 322–329 (1980).

    Article  ADS  Google Scholar 

  26. Wahle, C. M. Biol. Bull. 165, 778–790 (1983).

    Article  Google Scholar 

  27. Hughes, T. P. & Jackson, J. B. C. Ecol Monogr. 55, 141–166 (1985).

    Article  Google Scholar 

  28. Sebens, K. P. J. exp. mar. Biol Ecol 72, 263–285 (1983).

    Article  Google Scholar 

  29. Buss, L. W. Proc. natn. Acad. Sci. U.S.A. 77, 5355–5359 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Winston, J. E. & Jackson, J. B. C. J. exp. mar. Biol. Ecol 76, 1–21 (1984).

    Article  Google Scholar 

  31. Fadlallah, Y. H. Coral Reefs 2, 129–150 (1983).

    Article  ADS  Google Scholar 

  32. Buss, L. W. Proc. natn. Acad. Sci. U.S.A. 79, 5337–5341 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Jones, W. E. Nature 178, 426–427 (1956).

    Article  ADS  Google Scholar 

  34. Kaufmann, K. W. Oecologia 49, 293–299 (1981).

    Article  ADS  Google Scholar 

  35. Hidaka, M. Coral Reefs 4, 111–116 (1985).

    Article  ADS  Google Scholar 

  36. Buss, L. W. Proc. natn. Acad. ScL U.S.A. 80, 1387–1391 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Nieuwkoop, P. D. & Sutasurya, L. A. Primordial Germ Cells in the Invertebrates (Cambridge University Press, 1981).

    Google Scholar 

  38. Sabbadin, A. & Zaniolo, G. J. exp. Zool. 207, 289–304 (1979).

    Article  Google Scholar 

  39. Buss, L. W. & Green, D. R. Devl comp. Immun. 9, 191–201 (1985).

    Article  CAS  Google Scholar 

  40. Sabbadin, A. Devl Biol 24, 379–391 (1971).

    Article  CAS  Google Scholar 

  41. Oka, H. in Profiles of Japanese Science and Scientists (ed. Yukawa, H.) 195–206 (Kodansha, Tokyo, 1970).

    Google Scholar 

  42. Scofield, V. L., Schlumpberger, J. L., West, L. A. & Weismann, I. L. Nature 295, 499–502 (1982).

    Article  ADS  CAS  Google Scholar 

  43. Grosberg, R. K. Evolution (submitted).

  44. Strathmann, R. R., Strathmann, M. & Emson, R.H. Am. Nat. 123, 796–818 (1984).

    Article  Google Scholar 

  45. Yamazaki, K. E., Beauchamp, G. K., Bard, J., Thomas, L. & Boyse, E. A. Proc. natn. Acad. ScL U.S.A. 79, 7828–7831 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosberg, R., Quinn, J. The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322, 456–459 (1986). https://doi.org/10.1038/322456a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322456a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing