Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient solar energy conversion with CuInS2

Abstract

The high absorptivity associated with a direct energy gap in the optimum range for solar-energy conversion makes CuInS2 a particularly promising material for efficient solar-energy conversion1. Achieved solar-to-electrical conversion efficiencies have been limited to 6% (refs 2–8). We report here a new heterogeneous poly crystalline n-CuInS2 based semiconductor which has yielded conversion efficiencies of 9.7% in an electrochemical cell. The high photoactivity is also evident in a Schottky barrier solar cell configuration. The origin of the improved efficiency is attributed to impurity scavenging by In spheres resulting from a modified vapour/liquid/solid (VLS) growth process9–11 and the influence of the acidic iodine iodide electrolyte on the cell performances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shay, J. L. & Wernick, J. H. in Ternary Chalcopyrite Semiconductors: Growth, Electric Properties and Application (Pergamon, Oxford, 1975).

    Google Scholar 

  2. Robbins, M. et al. J. electrochem. Soc. 125, 831–832 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Lewerenz, H. J., Goslowsky, H. & Thiel, F. A. Sol. Energy Mater. 91, 159–166 (1983).

    Article  ADS  Google Scholar 

  4. Cahen, D. et al. J. electrochem. Soc. 132, 1062–1070 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Mirovsky, Y., Tenne, R., Cahen, D., Sawatzky, G. & Polak, M. J. electrochem. Soc. 132, 1070–1076 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Russak, M. A. & Creter, C. J. electrochem. Soc. 132, 1741–1745 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Kazmerski, L. L. & Sanborn, G. A. J. appl. Phys. 48, 3178–3180 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Tell, B. & Thiel, F. A. J. appl. Phys. 50, 5045–5046 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Goslowsky, H., Fiechter, S., Könenkamp, R. & Lewerenz, H. J. Sol. Energy Mater. (in the press).

  10. Lewerenz, H. J. et al. J. mater. Sci. (in the press).

  11. Goslowsky, H., Husemann, K.-D., Luck, J., Szacki, W. W. & Lewerenz, H. J. Mater. Lett. (in the press).

  12. Verheijen, A. W., Giling, L. J. & Bloem, J. Mater. Res. Bull. 14, 237–240 (1979).

    Article  CAS  Google Scholar 

  13. Wagner, R. S. & Ellis, W. C. Appl. phys. Lett. 4, 89–90 (1964).

    Article  ADS  CAS  Google Scholar 

  14. Goslowsky, H., Kühne, H.-M., Neff, H., Kötz, R. & Lewerenz, H. J. Surf. Sci. 149, 191–208 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Furtak, T. E., Canfield, D. C. & Parkinson, B. A. J. appl. Phys. 51, 6018–6021 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Menezes, S., Schneemeyer, L. F. & Lewerenz, H. J. Appl. phys. Lett. 38, 949–951 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Lewerenz, H. J., Tributsch, H. & Spiesser, M. J. electrochem. Soc. 132, 700–703 (1985).

    Article  CAS  Google Scholar 

  18. Parkinson, B. A., Heller, A. & Miller, B. J. electrochem. Soc. 126, 954–959 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Heller, A., Lewerenz, H. J. & Miller, B. Ber. Bunsen. phys. Chem. 84, 592–595 (1980).

    Article  CAS  Google Scholar 

  20. Menezes, S., Lewerenz, H. J., Thiel, F. A. & Bachmann, K.-J. Appl. phys. Lett. 38, 710–712 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Binsma, J. J. M. thesis, Univ. Nijmegen (1981).

  22. Binsma, J. J. M., Van Enckevort, W. J. P. & Staarnick, G. W. M. J. crystallogr. Growth 61, 138–156 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Ahearn, A. J. (ed.) Trace Analysis by Mass Spectrometry (Academic, New York, 1972).

  24. Thomson, M. & Walsh, J. N. A Handbook of Inductively Coupled Plasma Spectrometry (Blackie, Glasgow 1983).

    Google Scholar 

  25. Kunst, M. & Tributsch, H. Chem. phys. Lett. 105, 123–126 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Pfann, W. G. in Solid State Phys. 4: Techniques of Zone Melting and Crystal Growing (New York, 1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewerenz, H., Goslowsky, H., Husemann, KD. et al. Efficient solar energy conversion with CuInS2. Nature 321, 687–688 (1986). https://doi.org/10.1038/321687a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321687a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing