Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy

Abstract

Two growth mechanisms of considerable recent interest are related to a single statistical mechanical model. Tip splitting without interfacial tension occurs when a fluid pushes into another miscible fluid of higher viscosity. Dendritic growth occurs when anisotropic molecules aggregate—a common example is the snowflake. We find that both structures are fractal objects, and can be obtained from a single statistical mechanical model, implying that there is a relation between the underlying physical processes involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Langer, J. S. Rev. mod. Phys. 52, 1 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Ben-Jacob, E., Goldenfeld, N., Langer, J. S. & Schön, G. Phys. Rev. A29, 330–340 (1984).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Brower, R. C., Kessler, D. A., Koplik, J. & Levine, H. Phys. Rev. A29, 1335–1342 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Kessler, D. A., Koplik, J. & Levine, H. Phys. Rev. A30, 2820–2823 (1984).

    Article  ADS  Google Scholar 

  5. Honjo, H., Ohta, S. & Sawada, Y. Phys. Rev. Lett. 55, 841–844 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Vicsek, T. Phys. Rev. Lett. 53, 2281–2284 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Szép, J., Cserti, J. & Kertész, J. J. Phys. A18, L413–L416 (1985).

    ADS  Google Scholar 

  8. Kertész, J. & Vicsek, T. J. Phys. A (in the press).

  9. Bentley, W. A. & Humphreys, W. J. Snow Crystals (Dover, New York, 1962).

    Google Scholar 

  10. Nittmann, J., Daccord, G. & Stanley, H. E. Nature 314, 141–144 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Sander, L. M., Ramanlal, P. & Ben-Jacob, E. Phys. Rev. A32, 3160–3165 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Van Damme, H., Obrecht, F., Levitz, P., Gatineau, L. & Laroche, C. Nature 320, 731–733 (1986).

    Article  ADS  Google Scholar 

  13. DeGregoria, A. J. & Schwartz, L. W. J. Fluid Mech. 164, 383–400 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  14. Bensimon, D. Phys. Rev. A33, 1302–1308 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Lenormand, R. & Zarcone, C. Phys. chem. Hydrodyn. 6, 497–506 (1985).

    Google Scholar 

  16. Chen, J. D. & Wilkinson, D. Phys. Rev. Lett. 55, 1892–1895 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Måløy, K. J., Feder, J. & Jøssang, T. Phys. Rev. Lett. 55, 2688–2691 (1985).

    Article  ADS  Google Scholar 

  18. Daccord, G., Nittmann, J. & Stanley, H. E. Phys. Rev. Lett. 56, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Ben-Jacob, E. et al. Phys. Rev. Lett. 55, 1315–1318 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Paterson, L. J. Fluid. Mech. 113, 513–529 (1981).

    Article  ADS  Google Scholar 

  21. Maddox, J. Nature 313, 93 (1985).

    Article  ADS  Google Scholar 

  22. Niemeyer, L., Pietronero, L. & Wiesmann, H. J. Phys. Rev. Lett. 52, 1033–1036 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  23. Paterson, L. Phys. Rev. Lett. 52, 1621–1624 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Sherwood, J. D. & Nittmann, J. J. Phys., Paris 47, 15–21 (1986).

    Article  Google Scholar 

  25. Saffman, P. G. & Taylor, G. I. Proc. R. Soc. A245, 312–329 (1958).

    ADS  CAS  Google Scholar 

  26. Tang, C. Phys. Rev. A31, 1977–1979 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Paterson, L. Physics Fluids 28, 26–30 (1985).

    Article  ADS  Google Scholar 

  28. Chuoke, R. L., Van Meurs, P. & Van der Pol, C. Trans. Am. Inst. Min. Engrs 216, 188–194 (1959).

    Google Scholar 

  29. Mullins, W. W. & Sekerka, R. F. J. appl. Phys. 34, 323–329 (1963).

    Article  ADS  CAS  Google Scholar 

  30. Witten, T. A. & Sander, L. M. Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  CAS  Google Scholar 

  31. Witten, T. A. & Sander, L. M. Phys. Rev. B27, 5686–5697 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  32. Meakin, P. in On Growth and Form: Fractal and Non-Fractal Pattern in Physics (eds Stanley H. E. & Ostrowsky, N.) (Nijhoff, Dordrecht, 1985).

    Google Scholar 

  33. Meakin, P. Phys. Rev. (submitted).

  34. Mason, B. J. Scient. Am. 204, No. 1, 120–130 (1961).

    Article  CAS  Google Scholar 

  35. Jullien, R., Kolb, M. & Botet, R. J. Phys., Paris 45, 395–399 (1984).

    Article  Google Scholar 

  36. Ball, R. C., Brady, R. M., Rossi, G. & Thompson, B. R. Phys. Rev. Lett. 55, 1406–1409 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Meakin, P. Phys. Rev. A27, 2616–2623 (1983).

    Article  ADS  Google Scholar 

  38. Meakin, P. Pap. presented at int. Conf. Fragmentation, Form and Flow in Fractured Media Neve Ilan, 6–9 January (1986).

  39. Shraiman, B. I. & Bensimon, D. Phys. Rev. A30, 2840–2844 (1984).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nittmann, J., Stanley, H. Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature 321, 663–668 (1986). https://doi.org/10.1038/321663a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321663a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing