Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean

Abstract

The magnetostratigraphy of deep-sea sediment cores has proven to be a powerful and high-resolution method of dating and comparing sedimentary records. In contrast to this widespread application, relatively few attempts have been made to analyse and identify the mineralogy, grain size and origin of the carrier of the remanent magnetization1,2. It is widely assumed that dominant ferrimagnetic minerals in deep-sea sediments are of lithogenic origin; that is, that they derive from oceanic or continental detritus, volcanic ashfalls, micrometeorites, hydrothermal precipitation or chemical mineralization processes. A very different view was taken by Kirschvink and Lowenstam3, who suggested that fossil remnants of magnetite-mineralizing organisms, in particular magnetotactic bacteria, might play an important part in the magnetization of sediments deposited in certain detritus-poor aquatic systems. We have used rock-magnetic diagnostic methods to characterize the magnetic phases in deep-sea sediments from the South Atlantic; these phases were then extracted and studied with the electron microscope. Our results indicate that fossil bacterial magnetite is the main carrier of the natural remanent magnetization in sediments ranging in age from Quarternary to Eocene. Different types of bacterial magnetosomes were detected, most of them occurring in chains of identical particles, and nearly all of them falling into the theoretically determined4 size range of single-domain magnetitite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kent, D. V. & Lowrie, W. J. geophys. Res. 79, 2987–3000 (1974).

    Article  ADS  Google Scholar 

  2. Løvlie, R., Lowrie, W. & Jacobs, M. Earth planetary Sci. Lett. 15, 157–168 (1971).

    Article  ADS  Google Scholar 

  3. Kirschvink, J. L. & Lowenstam, H. A. Earth planet. Sci. Lett. 44, 193–204 (1979).

    Article  ADS  Google Scholar 

  4. Butler, R. F. & Banerjee, S. K. J. geophys. Res. 80, 4049–4058 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Hsü, K. J., LaBrecque, J. & Pisciotto, K. A. Init. Rep. DSDP 73, 5–26 (1984).

    Google Scholar 

  6. Karpoff, A. M. Init. Rep. DSDP 73, 515–535 (1984).

    CAS  Google Scholar 

  7. Tauxe, L., Tucker, P., Petersen, N. & LaBrecque, J. L. Init. Rep. DSDP 73, 609–621 (1984).

    Google Scholar 

  8. Poore, R. Z. et al. Init. Rep. DSDP 73, 645–655 (1984).

    Google Scholar 

  9. Tucker, P. Init. Rep. DSDP 73, 663–672 (1984).

    Google Scholar 

  10. Tucker, P. & Tauxe, L. Init. Rep. DSDP 73, 673–685 (1984).

    Google Scholar 

  11. Lowrie, W. & Fuller, M. J. geophys. Res. 76, 6339–6349 (1971).

    Article  ADS  Google Scholar 

  12. Cisowski, S. Phys. Earth planet. Inter. 26, 56–62 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Day, R., Fuller, M. & Schmidt, V. A. Phys. Earth planet. Inter. 13, 260–267 (1977).

    Article  ADS  Google Scholar 

  14. King, J., Banerjee, S.K., Marvin, J. & Özdemir, Ö. Earth planet. Sci. Lett. 59, 404–419 (1982).

    Article  ADS  Google Scholar 

  15. Levi, S. & Merill, R. T. J. geophys. Res. 83, 309–323 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Bleil, U. & Petersen, N. Nature 301, 384–388 (1982).

    Article  Google Scholar 

  17. Appel, E. & Soffel, H. C. Geophys. Res. Lett. 3, 189–192 (1984).

    Article  ADS  Google Scholar 

  18. Kirschvink, J. L. Rev. Geophys. Space Phys. 21, 672–675 (1983).

    Article  ADS  Google Scholar 

  19. Blakemore, R. P. & Frankel, R. B. Scient. Am. 245, No. 6, 42–49 (1981).

    Article  Google Scholar 

  20. Blakemore, R. P. A. Rev. Microbiol. 36, 217–238 (1982).

    Article  CAS  Google Scholar 

  21. Towe, K. M. & Moench, T. Earth planet. Sci. Lett. 52, 213–220 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Chang, S. R. & Kirschvink, J. L. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L., Jones, D. S. & MacFadden, B. J.) 647–669 (Plenum, New York, in the press).

  23. Kirschvink, J. L. & Chang, S. R. Geology 12, 559–562 (1984).

    Article  ADS  Google Scholar 

  24. Moskowitz, B. M. & Hargraves, R. B. Science 225, 1152–1154 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, N., von Dobeneck, T. & Vali, H. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320, 611–615 (1986). https://doi.org/10.1038/320611a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320611a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing