Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism

Abstract

Ca2+ accumulation and release from intracellular organelles is important for Ca2+ -signalling events within cells1,2. In a variety of cell types, the active Ca2+-pumping properties of endoplasmic reticulum (ER) have been directly studied using chemically per-meabilized cells3–6. The same preparations have been extensively used to study Ca2+ release from ER, in particular, release mediated by the intracellular messenger inositol 1,4,5-trisphosphate (InsP3)1,2,5,7–12. So far, these studies and others using microsomal membrane fractions2,11,13–15 have revealed few mechanistic details of Ca2+ release from ER, although a recent report16 indicated that InsP3-mediated Ca22+ release from liver microsomes may be dependent on GTP. In contrast to the latter report, we describe here the direct activation of a specific and sensitive guanine nucleotide regulatory mechanism mediating a substantial release of Ca2+ from the ER of cells of the neuronal cell line N1E-115. These data indicate the operation of a major new Ca2+ gating mechanism in ER which is specifically activated by GTP, deactivated by GDP, and which appears to involve a GTP hydrolytic cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Gill, D. L. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 19, 195–212 (1985).

    Google Scholar 

  3. Wakasugi, H. et al. J. Membrane Biol. 65, 205–220 (1982).

    Article  CAS  Google Scholar 

  4. Burgess, G. M., McKinney, J. S., Fabiato, A., Leslie, B. A. & Putney, J. W. J. biol. Chem. 258, 15336–15345 (1983).

    CAS  PubMed  Google Scholar 

  5. Gershengorn, M. C., Geras, E., Purrello, V. S. & Rebecchi, M. J. J. biol. Chem. 259, 10675–10681 (1984).

    CAS  PubMed  Google Scholar 

  6. Gill, D. L. & Chueh, S. H. J. biol. Chem. 260, 9289–9297 (1985).

    CAS  PubMed  Google Scholar 

  7. Streb, H., Irvine, R. F., Berridge, M. J. & Schulz, I. Nature 306, 67–69 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Burgess, G. M. et al. Nature 309 63–66 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F. & Williamson, J. R. J. biol. Chem. 259, 3077–3081 (1984).

    CAS  PubMed  Google Scholar 

  10. Hirata, M., Suematsu, E., Hashimoto, T., Hamachi, T. & Koga, T. Biochem. J. 223, 229–236 (1984).

    Article  CAS  Google Scholar 

  11. Joseph, S. K., Williams, R. J., Corkey, B. E., Matschinsky, F. M. & Williamson, J. R. J. biol. Chem. 259, 12952–12955 (1984).

    CAS  PubMed  Google Scholar 

  12. Prentki, M., Wollheim, C. B. & Lew, P. D. J. biol. Chem. 259, 13777–13782 (1984).

    CAS  PubMed  Google Scholar 

  13. Prentki, M. et al. Nature 309,562–564 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Streb, H., Bayerdörffer, E., Haase, W., Irvine, R. F. & Schulz, I. J. Membrane Biol. 81, 241–253 (1984).

    Article  CAS  Google Scholar 

  15. O'Rourke, F. A., Halenda, S. P., Zavoico, G. B. & Feinstein, M. B. J. biol. Chem. 260, 956–962 (1985).

    CAS  PubMed  Google Scholar 

  16. Dawson, A. P. FEBS Lett. 185, 147–150 (1985).

    Article  CAS  Google Scholar 

  17. Gill, D. L., Grollman, E. F. & Kohn, L. D. J. biol. Chem. 256, 184–192 (1981).

    CAS  PubMed  Google Scholar 

  18. Gill, D. L. J. biol. Chem. 257, 10986–10990 (1982).

    CAS  PubMed  Google Scholar 

  19. Gill, D. L., Chueh, S. H. & Whitlow, C. L. J. biol. Chem. 259, 10807–10813 (1984).

    CAS  PubMed  Google Scholar 

  20. Kimura, N. & Shimada, N. J. biol. Chem. 258, 2278–2283 (1983).

    CAS  PubMed  Google Scholar 

  21. Smith, J. B., Smith, L. & Higgins, B. L. J. biol. Chem. 260, 14413–14416 (1985).

    CAS  PubMed  Google Scholar 

  22. Ueda, T., Chueh, S. H., Noel, M. W. & Gill, D. L. J. biol. Chem. 261, 3184–3192 (1986).

    CAS  PubMed  Google Scholar 

  23. Lee, J. C. & Lee, L. L. Y. Biochemistry 18, 5518–5526 (1979).

    Article  CAS  Google Scholar 

  24. Timasheff, S. N. & Grisham, L. M. A. Rev. Biochem. 49, 565–591 (1980).

    Article  CAS  Google Scholar 

  25. Rodbell, M. Nature 284, 17–22 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, D., Ueda, T., Chueh, SH. et al. Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 320, 461–464 (1986). https://doi.org/10.1038/320461a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320461a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing