Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homing behaviour of axons in the embryonic vertebrate brain

Abstract

In embryonic nervous systems, growing axons must often travel long distances through diverse extracellular terrains to reach their postsynaptic partners. In most embryos, axons grow to their appropriate targets along particular tracts or nerves, as though they were following guidance cues confined to specific pathways1–3. For example, in all vertebrates, axons from the retina invariably grow to the tectum along the well-defined optic tract4–6. Yet, transplant experiments demonstrate that retinal axons make tectal projections even though they enter the brain at locations which are distinctly off the optic tract7–11. Only recently has it become possible to label discreet growing projections in the embryonic vertebrate brain12. Thus, it is not yet known whether displaced retinal axons grow directly towards the tectum or find it accidently, through random extension. To resolve this question, pioneering axons from normal and transplanted eyes in embryonic Xenopus were labelled using a short-survival horseradish peroxidase (HRP) method4, and their orientation during growth was quantitatively assessed. The finding that the ectopic fibres head towards their distant targets implies that guidance cues are not restricted to specific pathways but are distributed throughout the embryonic brain. The significance of this result is discussed with respect to the ontogeny and evolution of the visual pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singer, M., Norlander, R. H. & Egar, M. J. comp. Neurol. 185, 1–22 (1979).

    Article  CAS  Google Scholar 

  2. Goodman, C. S. Bioscience 34, 300–306 (1984).

    Article  Google Scholar 

  3. Lance-Jones, C. & Landmesser, L. Proc. R, Soc. B214, 1–18 (1981).

    ADS  CAS  Google Scholar 

  4. Harris, W. A., Holt, C. E., Smith, T. A. & Gallenson, N. J. Neurosci. Res. 13, 101–122 (1985).

    Article  CAS  Google Scholar 

  5. Shatz, C. J. & Kliot, M. Nature 300, 525–529 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Thanos, S. & Bonhoeffer, F. J. comp. Neurol. 219, 420–430 (1983).

    Article  CAS  Google Scholar 

  7. Hibbard, E. Expl. Neurol. 19, 350–356 (1967).

    Article  CAS  Google Scholar 

  8. Sharma, S. C. Nature new Biol. 238, 286–287 (1972).

    Article  CAS  Google Scholar 

  9. Hibbard, E. & Ornberg, R. L. Expl. Neurol. 50, 113–123 (1976).

    Article  Google Scholar 

  10. Constantine-Paton, M. & Capranica, R. R. J. comp. Neurol. 170, 17–32 (1976).

    Article  CAS  Google Scholar 

  11. Harris, W. A. J. Neurosci. 2, 329–353 (1982).

    Google Scholar 

  12. Holt, C. E. & Harris, W. A. Nature 301, 150–152 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Nieuwkoop, P. D. & Faber, J. Normal Tables of Xenopus laevis (North-Holland, Amsterdam, 1956).

    Google Scholar 

  14. Rugh, R. Experimental Embryology (Burgess Publishing Co., Minneapolis, 1962).

    Google Scholar 

  15. Holt, C. E. J. Neurosci. 4, 1130–1152 (1984).

    Article  CAS  Google Scholar 

  16. Ferguson, B. A. Soc. Neurosci. Abstr. 9, 759 (1983).

    Google Scholar 

  17. Harris, W. A. J. comp. Neurol. 194, 319–333 (1980).

    Article  CAS  Google Scholar 

  18. Constantine-Paton, M. & Capranica, R. R. J. comp. Neurol. 170, 17–32 (1976).

    Article  CAS  Google Scholar 

  19. Sladek, J. R. & Gash, D. M. Neural Transplants: Development and Function (Plenum, New York, 1984).

    Book  Google Scholar 

  20. Gunderson, R. W. & Barrett, J. N. J. Cell Biol. 87, 546–554 (1980).

    Article  Google Scholar 

  21. Lumsden, A. G. S. & Davis, A. M. Nature 306, 786–788 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Carri, N. A. & Ebendal, T. Dev. Brain Res. 6, 219–229 (1983).

    Article  Google Scholar 

  23. Nurcombe, V. & Bennett, M. R. Expl. Brain Res. 44, 249–258 (1981).

    Article  CAS  Google Scholar 

  24. Sarthy, P. V., Curtis, B. M. & Catteral, W. A. J. Neurosci. 3, 2532–2544 (1983).

    Article  CAS  Google Scholar 

  25. Gierer, A. Biol. Cybern. 42, 69–78 (1981).

    Article  CAS  Google Scholar 

  26. Bonhoeffer, F. & Huf, J. EMBO J. 1, 427–431 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, W. Homing behaviour of axons in the embryonic vertebrate brain. Nature 320, 266–269 (1986). https://doi.org/10.1038/320266a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320266a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing