Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Age-impaired impulse flow from nucleus basalis to cortex

Abstract

Recent studies have renewed interest in the role of acetylcholine (ACh) in the cognitive changes associated with ageing and dementia1–4. Deficits in cortical choline acetyltransferase (ChAT) in Alzheimer's disease have been consistently demonstrated5–9, while other research has suggested a connection between deterioration of cortical ACh fibres and dementia4. However, despite clear biochemical and anatomical evidence f or a fall in ACh in dementia1–9, results of therapeutic trials with cholinergic agonists, precursors and cholinesterase inhibitors have been inconsistent6–9. Such findings suggest that cortical cholinergic disorders are not wholly a function of simple biochemical change; alterations of impulse flow along cholinergic fibres could well be as debilitating. An important extrinsic source of cortical ACh innervation derives from neurones diffusely located in rat basal forebrain10–16, denoted the nucleus basalis (NB)15,17. We have now investigated the impulse conduction properties of cortically projecting, putatively cholinergic NB axons in adult and aged rats and have found that conduction latencies from NB to frontal cortex are significantly longer (by 51%) in aged animals. In addition, systematic analysis varying cortical stimulation depth revealed that these longer latencies are due entirely to decreased conduction velocities in the subcortical fibre projections. Indeed, intracortical velocities were virtually identical in the two groups. Our results indicate that ageing occasions a decrease in the temporal fidelity of impulse flow in the cholinergic input to the cortex from the NB, a previously overlooked but potentially important element in cognitive deficits that occur with age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Price, D. L. et al. Neurosci. Comments 1, 84–92 (1982).

    Google Scholar 

  2. Whitehouse, P. J. et al. Science 215, 1237–1239 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Coyle, J. T., Price, D. L. & DeLong, M. R. Science 219, 1184–1190 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Struble, R. G., Cork, L. C., Whitehouse, P. J. & Price, D. L. Science 216, 413–415 (1982).

    Article  ADS  CAS  Google Scholar 

  5. McGeer, E. G. & McGeer, P. L. in Advances in Behavioral Biology: Neurobiology of Aging (eds Ordy, J. M. & Brizzee, K. R.) 287–305 (Plenum, New York, 1975).

    Book  Google Scholar 

  6. Corkin, S. Trends Neurosci. 4, 287–290 (1981).

    Article  CAS  Google Scholar 

  7. Kubanis, P. & Zornetzer, S. F. Behav. neural Biol. 31, 115–172 (1981).

    Article  CAS  Google Scholar 

  8. Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. Science 217, 408–417 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Rogers, J. & Bloom, F. E. in Handbook of the Biology of Aging (eds Schneider, E. & Finch, C. E.) 645–691 (Van Nostrand Reinhold, New York, 1985).

    Google Scholar 

  10. Schute, C. C. D. & Lewis, P. R. Brain 90, 497–520 (1967).

    Article  Google Scholar 

  11. Johnston, M. V., McKinney, M. & Coyle, J. T. Proc. natn. Acad. Sci. U.S.A. 76, 5392–5396 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Johnston, M. V., McKinney, M. & Coyle, J. T. Expl Brain Res. 43, 159–172 (1981).

    Article  CAS  Google Scholar 

  13. Lehmann, J., Nagy, J. I., Atmadja, S. & Fibiger, H. C. Neuroscience 5, 1161–1174 (1980).

    Article  CAS  Google Scholar 

  14. Wenk, H., Bigl, V. & Meyer, U. Brain Res. Rev. 2, 295–316 (1980).

    Article  CAS  Google Scholar 

  15. Bigl, V., Woolf, N. J. & Butcher, L. L. Brain Res. Bull. 8, 727–749 (1982).

    Article  CAS  Google Scholar 

  16. McKinney, M., Coyle, J. T. & Hedreen, J. J. comp. Neurol. 217, 103–121 (1983).

    Article  CAS  Google Scholar 

  17. Parent, A., Gravel, S. & Oliver, A. Adv. Neurol. 24, 1–11 (1979).

    Google Scholar 

  18. Aston-Jones, G., Shaver, R. & Dinan, T. Neurosci. Lett. 46, 19–24 (1984).

    Article  CAS  Google Scholar 

  19. Aston-Jones, G., Shaver, R. & Dinan, T. Brain Res. 325, 271–285 (1985).

    Article  CAS  Google Scholar 

  20. Rye, D. B., Wainer, B. J., Mesulam, M.-M., Mufson, E. J. & Saper, C. B. Neuroscience 13, 627–643 (1984).

    Article  CAS  Google Scholar 

  21. Woolf, N. J., Eckenstein, R. & Butcher, L. L. Brain Res. Bull. 13, 751–784 (1984).

    Article  CAS  Google Scholar 

  22. Pearson, R. C. A. et al. Brain Res. 289, 375–379 (1983).

    Article  CAS  Google Scholar 

  23. Chase, M. H., Morales, F. R., Boxer, P. A. & Fung, S. J. Expl Neurol. (in the press).

  24. Heron, D. S., Hershkowitz, M., Shinitzky, M. & Samuel, D. in Neurotransmitters and their Receptors (eds Littauer, U., Didai, Y., Silman, L, Peichberg, V. & Vogel, Z.) 125–137 (Wiley, New York, 1980).

    Google Scholar 

  25. Waxman, S. G. & Bennette, M. V. L. Nature new Biol. 238, 217–219 (1972).

    Article  CAS  Google Scholar 

  26. Swadlow, H. A. & Waxman, S. G. Expl Neurol. 53, 128–150 (1976).

    Article  CAS  Google Scholar 

  27. Barr, M. L. The Human Nervous System 2nd edn, 156–158 (Harper & Row, Hagerstown, 1974).

    Google Scholar 

  28. Griffin, J. W. in The Clinicai Neurosciences (ed. Rosenberg, R. N.) 538–539 (Churchill-Livingstone, New York, 1983).

    Google Scholar 

  29. Wagman, I. H. & Lesse, H. J. Physiol., Lond. 15, 235–244 (1952).

    CAS  Google Scholar 

  30. Behse, F. & Buchthal, F. J. Neurol. Neurosurg. Psychiat. 34, 404–414 (1971).

    Article  CAS  Google Scholar 

  31. Dorfman, L. J. & Bosley, T. M. Neurology 29, 38–44 (1979).

    Article  CAS  Google Scholar 

  32. Rogers, J., Zornetzer, S. F. & Bloom, F. E. Neurobiol. Ageing 2, 15–25 (1981).

    Article  CAS  Google Scholar 

  33. Landfield, P. W. & Lynch, G. J. Gerontol. 32, 523–533 (1977).

    Article  CAS  Google Scholar 

  34. Landfield, P. W., McGaugh, J. L. & Lynch, G. Brain Res. 150, 85–101 (1978).

    Article  CAS  Google Scholar 

  35. Smith, D. O. & Rosenheimer, J. L. Expl Neurol. 83, 358–366 (1984).

    Article  CAS  Google Scholar 

  36. Krnjevic, K. & Silver, A. J. Anat. 99, 711–759 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hedreen, J. C. et al. J. comp. Neurol. 226, 246–254 (1984).

    Article  CAS  Google Scholar 

  38. Houser, C. R., Crawford, G. D., Barber, R. P., Salvaterra, P. M. & Vaughn, J. E. Brain Res. 266, 97–119 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aston-Jones, G., Rogers, J., Shaver, R. et al. Age-impaired impulse flow from nucleus basalis to cortex. Nature 318, 462–464 (1985). https://doi.org/10.1038/318462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318462a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing