Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tailoring the pH dependence of enzyme catalysis using protein engineering

Abstract

One of the goals of protein engineering is to tailor the pH dependence of enzyme catalysis to optimize activity in industrial processes. Chemical modification studies have shown that the pH dependence of catalysis by serine proteases alters with changes in overall surface charge1, which suggests that a possible general method of modifying pH dependence is to alter the electrostatic environment of the active site by protein engineering and so change the pKa values of ionic catalytic groups. Electrostatic effects are of considerable importance in enzyme catalysis and are thought to play a major part in stabilizing charged transition states2–5. However, it is extremely difficult to calculate electrostatic effects in proteins because of the microheterogeneity of the dielectric constant. In the present study we show how the change of just one surface charge which is 14–15 Å from the active site of subtilisin has a significant effect on the pH dependence of the enzyme and that the magnitude of the effect changes with ionic strength in a manner qualitatively consistent with electrostatic theory. Such experiments should provide the basis for refining theoretical calculations of electrostatic effects in catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Valenzuela, P. & Bender, M. L. Biochim. biophys. Acta 250, 538–548 (1971).

    Article  CAS  Google Scholar 

  2. Perutz, M. Science 201, 1187–1191 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Warshel, A., Russell, S. T. & Churg, A. K. Proc. natn. Acad. Sci. U.S.A. 81, 4785–4789 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Matthew, J. B., Hanania, G. I. H. & Gurd, F. R. N. Biochemistry 21, 1919–1939 (1979).

    Article  Google Scholar 

  5. Warshel, A. Acc chem. Res. 14, 284–290 (1981).

    Article  CAS  Google Scholar 

  6. Markland, F. S. & Smith, E. L. in The Enzymes Vol.3 (ed. Boyer, P. D.) 561–608 (Academic, New York, 1971).

    Google Scholar 

  7. Kraut, J. in The Enzymes Vol.3 (ed. Boyer, P. D.) 547–560 (Academic, New York, 1971).

    Google Scholar 

  8. Nedkov, P., Oberthür, W. & Braunitzer, G. Hoppe-Seyler's Z. physiol. Chem. 364, 1537–1540 (1983).

    Article  CAS  Google Scholar 

  9. Smith, E. L., Delange, R. J. Evans, W. H., Landon, M. & Markland, F. S. J. biol. Chem. 243, 2184–2191 (1968).

    CAS  PubMed  Google Scholar 

  10. Stahl, M. L. & Ferrari, E. J. Bact. 158, 411–418 (1984).

    CAS  PubMed  Google Scholar 

  11. Kurhara, M., Markland, F.S. & Smith, E.L. J. biol. Chem. 247, 5619–5631 (1972).

    Google Scholar 

  12. Gryczan, T. J., Contente, S. & Dubnau, D. J. Bact. 134, 318–329 (1978).

    CAS  PubMed  Google Scholar 

  13. Jalanko, A., Palva, I. & Söderland, H. Gene 14, 325–328 (1981).

    Article  CAS  Google Scholar 

  14. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A. & Chen, E. Y. Nucleic Acids Res. 11, 7911–7925 (1983).

    Article  CAS  Google Scholar 

  16. Vasantha, N. et al. J. Bact. 159, 811–819 (1984).

    CAS  PubMed  Google Scholar 

  17. Kawamura, F. & Doi, R. H. J. Bact. 160, 442–444 (1984).

    CAS  PubMed  Google Scholar 

  18. Fersht, A. R. Enzyme Structure and Mechanism 2nd edn, Ch. 5 (W. H. Freeman, New York, 1985).

    Google Scholar 

  19. Philipp, M., Tsai, I.-H. & Bender, M. L. Biochemistry 18, 3769–3773 (1979).

    Article  CAS  Google Scholar 

  20. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  21. Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M. & Smith, M. Nature 299, 756–758 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Kramer, B., Kramer, W. & Fritz, H. J. Cell 38, 879–887 (1984).

    Article  CAS  Google Scholar 

  23. Hardy, K. G. in DNA Cloning, a Practical Approach (ed. Glover, D. M.) 1–17 (IRL, Oxford, 1985).

    Google Scholar 

  24. Estell, D. A., Graycar, T. P. & Wells, J. A. J. biol. Chem. 260, 6518–6521 (1985).

    CAS  PubMed  Google Scholar 

  25. Fersht, A. R. & Renard, M. Biochemistry 13, 1416–1426 (1974).

    Article  CAS  Google Scholar 

  26. Bender, M. L. et al. J. Am. chem. Soc. 88, 5890–5931 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P., Russell, A. & Fersht, A. Tailoring the pH dependence of enzyme catalysis using protein engineering. Nature 318, 375–376 (1985). https://doi.org/10.1038/318375a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318375a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing