Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News and Views Feature
  • Published:

Molecular clocks: mastering time by gene regulation

Abstract

Self-sustaining clocks that regulate daily and seasonal rhythms are found in many biological systems, from fungi to humans. The structure and function of the molecular gears that control these clocks through the finely tuned regulation of gene expression are now being unravelled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The components of a molecular clock.
Figure 2: The interdependent regulation of Per and Tim in the fruitfly.
Figure 3: Feedback, autoregulatory loops are central for clock function.

References

  1. Pittendrigh, C. S. Annu. Rev. Physiol. 55, 17–54 (1993).

    Google Scholar 

  2. Takahashi, J. S. Annu. Rev. Neurosci. 18, 531–553 (1995).

    Google Scholar 

  3. Klein, D. C., Moore, R. Y. & Reppert, S. M. Suprachiasmatic NucleusThe Mind's Clock (Oxford Univ. Press, New York, 1991).

  4. Foulkes, N., Borjigin, J., Snyder, S. H. & Sassone-Corsi, P. Trends Neurosci. 20, 487–492 (1997).

    Google Scholar 

  5. Ralph, M. R., Foster, R. G. & Menaker, M. Science 247, 975–978 (1990).

    Google Scholar 

  6. Tosini, G. & Menaker, M. Science 272, 419–421 (1996).

    Google Scholar 

  7. Plautz, J. D., Kaneko, M., Hall, J. C. & Kay, S. A. Science 278, 1632–1635 (1997).

    Google Scholar 

  8. Ralph, M. R. & Menaker, M. Science 241, 1225–1227 (1988).

    Google Scholar 

  9. Morris, M. E. et al. Science 279, 1544–1547 (1998).

    Google Scholar 

  10. Luo, C., Loros, J. J. & Dunlap, J. C. EMBO J. 17, 1228–1235 (1998).

    Google Scholar 

  11. Liu, Y., Garceau, N. Y., Loros, J. J. & Dunlap, J. C. Cell 89, 477–486 (1997).

    Google Scholar 

  12. Garceau, N. Y., Liu, Y., Loros, J. J. & Dunlap, J. C. Cell 89, 469–476 (1997).

    Google Scholar 

  13. Konopka, R. J. & Benzer, S. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Google Scholar 

  14. Hall, J. C. Trends Neurosci. 18, 230–240 (1995).

    Google Scholar 

  15. Hardin, P., Hall, J. C. & Rosbash, M. Proc. Natl Acad. Sci. USA 89, 11711–11715 (1992).

    Google Scholar 

  16. Mittag, M., Lee, D. H. & Hastings, J. W. Proc. Natl Acad. Sci. USA 91, 5257–5261 (1994).

    Google Scholar 

  17. Reppert, S. M. & Sauman, I. Neuron 15, 983–986 (1995).

    Google Scholar 

  18. Huang, Z. J., Edery, I. & Rosbash, M. Nature 364, 259–262 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Vosshall, L. B. et al. Science 263, 1606–1609 (1994).

    Google Scholar 

  20. Saez, L. & Young, M. W. Neuron 17, 911–920 (1996).

    Google Scholar 

  21. Zeng, H., Qian, Z., Myers, M. & Rosbash, M. Nature 380, 129–135 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Myers, M. P., Wager-Smith, K., Rothenfluh-Milfiker, A. & Young, M. W. Science 271, 1736–1740 (1996).

    Google Scholar 

  23. Hunter-Ensor, M., Ousley, A. & Seghal, A. Cell 84, 677–685 (1996).

    Google Scholar 

  24. Tei, H. et al. nature 389, 512–516 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Sun, Z. S. et al. Cell 90, 1003–1011 (1997).

    Google Scholar 

  26. Albrecht, U., Sun, Z. S., Eichele, G. & Lee, C. C. Cell 91, 1055–1064 (1997).

    Google Scholar 

  27. Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. & Reppert, S. M. Neuron 19, 1261–1269 (1997).

    Google Scholar 

  28. King, D. P. et al. Cell 89, 641–653 (1997).

    Google Scholar 

  29. Lopez-Molina, L., Conquet, F., Dubois-Dauphin, M. & Schibler, U. EMBO J. 16, 6762–6771 (1997).

    Google Scholar 

  30. Sassone-Corsi, P. Cell 78, 361–364 (1994).

    Google Scholar 

  31. Molina, C. A., Foulkes, N. S., Lalli, E. & Sassone-Corsi, P. Cell 75, 875–886 (1993).

    Google Scholar 

  32. Foulkes, N., Borjigin, J., Snyder, S. H. & Sassone-Corsi, P. Proc. Natl Acad. Sci. USA 93, 14140–14145 (1996).

    Google Scholar 

  33. Grainger, R. M. & Gurdon, J. B. Proc. Natl Acad. Sci. USA 86, 1900–1904 (1989).

    Google Scholar 

  34. Temple, S. & Raff, M. Cell 44, 773–779 (1986).

    Google Scholar 

  35. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Cell 91, 639–648 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sassone-Corsi, P. Molecular clocks: mastering time by gene regulation. Nature 392, 872–874 (1998). https://doi.org/10.1038/31821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/31821

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing