Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Novel developmental specificity in the nervous system of transgenic animals expressing growth hormone fusion genes

Abstract

The development of methods for introducing foreign genes into the germ line of mice provides an approach for studying mechanisms underlying inducible and developmental gene regulation1–3. Transgenic animals expressing foreign genes have thus been used to test models of the role played by specific DNA sequences in determining cell-specific expression. Results from these experiments suggest that tissue-specific expression is the consequence of a cis-acting regulatory sequence4–11. However, these results do not exclude the possibility that cell-specific expression of some genes might be ‘coded’ by combinations of regulatory elements. We have previously described the production of transgenic mice from eggs microinjected with metallothionein-I/growth hormone (MGH) fusion genes12, and now demonstrate that the juxtaposition of sequences from two different genes can be deciphered by cells to generate novel tissue specificities. Although expression of the endogenous metallothionein and growth hormone genes has not been detected in neuronal cells, transgenic mice clearly express an MGH fusion gene in a restricted subset of neurones. These results suggest a model in which tissue-specific patterns of expression of certain genes are determined by combinations of cis-acting regulatory sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A. & Ruddle, F. H. Proc. natn. Acad. Sci. U.S.A. 77, 7380–7384 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Brinster, R. L. et al. Cell 27, 223–231 (1981).

    Article  CAS  Google Scholar 

  3. Costantini, F. & Lacy, E. Nature 294, 92–94 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Brinster, R. L. et al. Nature 306, 332–336 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Rusconi, S. & Kohler, G. Nature 314, 330–334 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Ornitz, D. M. et al. Nature 313, 600–602 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Grosschedl, R., Weaver, D., Baltimore, D. & Costantini, F. Cell 38, 647–658 (1984).

    Article  CAS  Google Scholar 

  8. Swift, G. H., Hammer, R. E., MacDonald, R. J. & Brinster, R. L. Cell 38, 639–646 (1984).

    Article  CAS  Google Scholar 

  9. Chada, K. et al. Nature 314, 377–379 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Shani, M. Nature 314, 283–289 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Krumlauf, R., Hammer, R., Tilghman, S. & Brinster, R. Molec. cell. Biol. 5, 1639–1648 (1985).

    Article  CAS  Google Scholar 

  12. Palmiter, R. D. et al. Nature 300, 611–615 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E. & Brinster, R. L. Science 222, 809–814 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Swanson, L. W. & Sawchenko, P. E. A. Rev. Neurosci. 6, 269–324 (1983).

    Article  CAS  Google Scholar 

  15. Hammer, R., Palmiter, R. & Brinster, R. Nature 311, 65–67 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Haan, E. A., Boss, B. D. & Lowan, W. M. Proc. natn. Acad. Sci. U.S.A. 79, 7585–7589 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Evans, R. M. & Rosenfeld, M. G. Recent Prog. Horm. Res. (in the press).

  18. Harpold, M. M., Dobner, P. R., Evans, R., Bancroft, F. C. & Darnell, J. E. Nucleic Acids Res. 6, 3133–3144 (1979).

    Article  CAS  Google Scholar 

  19. Swanson, L. W., Sawchenko, P. E., Rivier, J. & Vale, W. W. Neuroendocrinology 36, 165–186 (1983).

    Article  CAS  Google Scholar 

  20. Berod, A., Hartman, B. K. & Pujol, J. F. J. Histochem. Cytochem. 29, 844–850 (1981).

    Article  CAS  Google Scholar 

  21. Danielson, K. G., Ohi, S. & Huang, P. C. J. Histochem. Cytochem. 30, 1033–1039 (1982).

    Article  CAS  Google Scholar 

  22. Green, M., Maniatis, T. & Melton, D. Cell 32, 681–694 (1983).

    Article  CAS  Google Scholar 

  23. Cox, K. H., De Leon, D. V., Angerer, L. M. & Angerer, R. C. Devl Biol. 101, 485–502 (1984).

    Article  CAS  Google Scholar 

  24. Hammer, R. E., Brinster, R., Rosenfeld, M. G., Evans, R. M. & Mayo, K. E. Nature 315, 413–416 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, L., Simmons, D., Arriza, J. et al. Novel developmental specificity in the nervous system of transgenic animals expressing growth hormone fusion genes. Nature 317, 363–366 (1985). https://doi.org/10.1038/317363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317363a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing