Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active γ-carboxylated human factor IX expressed using recombinant DNA techniques

Abstract

Factor IX (Christmas factor), a vitamin K-dependent plasma protein made in the liver, functions in the middle phase of the intrinsic pathway of blood coagulation1. A functional deficiency of factor IX underlies haemophilia B, a chromosome X-linked recessive disease for which the major therapeutic approach is replacement treatment using factor IX concentrates. The cloning and characterization of the gene for human factor IX2–4 would mean that human factor IX could be produced in greater yield and purity through using recombinant DNA techniques5. We have now used a human factor IX cDNA clone4, inserted into a vaccinia virus-derived vector, to infect human hepatoma cells which normally produce no factor IX6, and mouse fibroblasts. Fully active factor IX was produced by the hepatoma cells, whereas the fibroblasts produced a protein less active than natural factor IX, even in the presence of high levels of vitamin K. Human factor IX is extensively post-translationally modified, and thus represents probably the most complex protein produced in active form by recombinant DNA techniques to date. Our study also illustrates the potential of vaccinia virus-based vectors for expressing significant amounts of complex, clinically useful proteins in eukaryotic cells, in addition to its already demonstrated usefulness for producing live recombinant vaccines7–9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hedner, U. & Davie, E. W. in Hemostasis and Thrombosis (eds Colman, R. W., Hirsh, J., Marder, V. J. & Salzmann, E. W.) 29–38 (Lippincott, Philadelphia, 1982).

    Google Scholar 

  2. Choo, K. H., Could, K. J., Rees, D. J. G. & Brownlee, G. G. Nature 299, 178–180 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Kurachi, K. & Davie, E. W. Proc. natn. Acad. Sci. U.S.A. 79, 6461–6464 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Jaye, M. et al. Nucleic Acids Res. 11, 2325–2335 (1983).

    Article  CAS  Google Scholar 

  5. Bloom, A. L. Nature 303, 474–475 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Fair, D. S. & Bahnak, B. R. Blood 64, 194–204 (1984).

    CAS  PubMed  Google Scholar 

  7. Smith, G. L., Hackett, M. & Moss, B. Nature 302, 490–495 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Panicali, D., Davis, S. W., Weinberg, R. L. & Paoletti, E. Proc. natn. Acad. Sci. U.S.A. 80, 7155–7159 (1983).

    Article  Google Scholar 

  9. Kieny, M.-P. et al. Nature 312, 163–166 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Chavin, S. I. & Weidner, S. M. J. biol. Chem. 259, 3387–3390 (1984).

    CAS  PubMed  Google Scholar 

  11. Fernlund, P. & Stenflo, J. J. biol Chem. 258, 12509–12512 (1983).

    CAS  PubMed  Google Scholar 

  12. McMullen, B. A., Fujikawa, K. & Kisiel, W. Biochem. biophys. Res. Commun. 115, 8–14 (1983).

    Article  CAS  Google Scholar 

  13. Sugo, T., Bjørk, I., Holmgren, A. & Stenflo, J. J. biol Chem. 259, 5705–5710 (1984).

    CAS  PubMed  Google Scholar 

  14. Morita, T., Isaacs, B. S., Esmon, C. T. & Johnson, A. E. J. biol. Chem. 259, 5698–5704 (1984).

    CAS  PubMed  Google Scholar 

  15. Malhotra, O. P. Thromb. Res. 15, 427–437, 439–448, 449–463 (1979).

    Article  CAS  Google Scholar 

  16. Caen, J., Larrieu, M. J. & Samama, M. in L' Hémostase (Expansion Scientinque, Paris, 1975).

  17. Lathe, R., Hirth, P., Dewilde, M., Harford, N. & Lecocq, J.-P. Nature 280, 473–474 (1980).

    Article  Google Scholar 

  18. Laemli, V. Nature 227, 680–685 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Salle, H., Altenburger, W., Elkaim, R. et al. Active γ-carboxylated human factor IX expressed using recombinant DNA techniques. Nature 316, 268–270 (1985). https://doi.org/10.1038/316268a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316268a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing