Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compartmentalization of sickle-cell calcium in endocytic inside-out vesicles

Abstract

Much recent interest in the mechanism of dehydration of the dense subpopulation of sickle-cell anaemia (SS) red cells, including the ‘irreversibly sickled cells’ (ISCs), stems from the view that these relatively rigid cells have a major role in the two main clinical features of the disease, namely haemolytic anaemia and microvascular occlusion1. The discovery that SS red cells have an elevated calcium content and accumulate Ca2+ during deoxygenation-induced sickling2–4 suggested a working hypothesis of wide appeal for the mechanism of cell dehydration: retained calcium would activate the red cell Ca2+-sensitive K+ channels5, causing progressive net loss of KCl and water6–8. However, retained calcium, which seemed as weakly bound to cytoplasmic buffers as in normal red cells9, failed to show any measurable activation of K+ channels or Ca2+ pumps in metabolically normal SS cells, despite the apparent functional normality or near-normality of these transport systems9–17. We now offer a possible explanation for this failure. We show that, contrary to the traditional views, SS cells, and to a lesser extent normal human red cells, possess intracellular vesicles with ATP-dependent Ca2+-accumulating capacity, and that nearly all the measurable calcium of fresh SS cells is contained within such vesicles, probably in the form of precipitates with inorganic or organic phosphates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bookchin, R. M. & Lew, V. L. Prog. Hemat. 13, 1–23 (1983).

    CAS  PubMed  Google Scholar 

  2. Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E. & Jacob, H. S. Nature 246, 105–106 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Palek, J. Blood 42, 988 (1973).

    Google Scholar 

  4. Palek, J. J. Lab. clin. Med. 89, 1365–1374 (1977).

    CAS  PubMed  Google Scholar 

  5. Gardos, G. Biochim. biophys. Acta 30, 653–654 (1958).

    Article  CAS  Google Scholar 

  6. Eaton, J. W., Berger, E., White, J. G. & Jacob, H. S. Br. J. Haemat. 38, 57–62 (1978).

    Article  CAS  Google Scholar 

  7. Glader, B. E. & Nathan, D. G. Blood 51, 983–989 (1978).

    CAS  PubMed  Google Scholar 

  8. Berkowitz, L. R. & Orringer, E. P. J. clin. Invest. 68, 1215–1220 (1981).

    Article  CAS  Google Scholar 

  9. Lew, V. L. & Bookchin, R. M. Biochim. biophys. Acta 602, 196–200 (1980).

    Article  CAS  Google Scholar 

  10. Bookchin, R. M. & Lew, V. L. Nature 284, 561–563 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Bookchin, R. M., Ortiz, O. E. & Lew, V. L. in Proc. 6th int. Conf. Red Cell Metabolism and Function (ed. Brewer, G. J.) 17–28 (Liss, New York, 1984).

    Google Scholar 

  12. Bookchin, R. M., Raventos, C. & Lew, V. L. in 5th Ann Arbor Conf. (ed. Brewer, G. J.) 163–182 (Liss, New York, 1981).

    Google Scholar 

  13. Gopinath, R. M. & Vincenzi, F. F. Am. J. Hemat. 7, 303–312 (1979).

    Article  CAS  Google Scholar 

  14. Litosch, I. & Lee, K. S. Am. J. Hemat. 8, 377–387 (1980).

    Article  CAS  Google Scholar 

  15. Dixon, E. & Winslow, R. M. Br. J. Haemat. 47, 391–397 (1981).

    Article  CAS  Google Scholar 

  16. Niggli, V., Adunyah, E. S., Cameron, B. F., Bababunmi, E. A. & Carafoli, E. Cell Calcium 3, 131–151 (1982).

    Article  CAS  Google Scholar 

  17. Luthra, M. G. & Sears, D. A. Blood 60, 1332–1336 (1982).

    CAS  PubMed  Google Scholar 

  18. Kent, G., Minick, O. T., Volini, F. I. & Orfei, E. Am. J. Path. 48, 831–857 (1966).

    CAS  PubMed  Google Scholar 

  19. Holroyde, C. P. & Gardner, F. H. Blood 36, 566–575 (1980).

    Google Scholar 

  20. Somlyo, A. V., Gonzalez-Serratos, H., Shuman, H., McClellan, G. & Somlyo, A. P. J. Cell Biol. 90, 577–594 (1981).

    Article  CAS  Google Scholar 

  21. Shuman, A., Somlyo, A. V. & Somlyo, A. P. Ultramicroscopy 1, 317–339 (1976).

    Article  CAS  Google Scholar 

  22. Lew, V. L. & Seymour, C. A. in Techniques in Lipid and Membrane Chemistry (eds Kornberg, H. L. et al.) (Elsevier, Amsterdam).

  23. Ohnishi, S. T. Br. J. Haemat. 55, 665–671 (1983).

    Article  CAS  Google Scholar 

  24. Larsen, F. L., Katz, S., Roufogalis, B. D. & Brooks, D. E. Nature 294, 667–668 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Pearson, H. A., Spencer, R. P. & Cornelius, E. A. New Engl. J. Med. 281, 923–926 (1969).

    Article  CAS  Google Scholar 

  26. Stempak, J. G. & Ward, R. T. J. Cell Biol. 22, 697–701 (1964).

    Article  CAS  Google Scholar 

  27. Kitazawa, T., Shuman, H. & Somlyo, A. P. Ultramicroscopy 11, 251–262 (1983).

    Article  CAS  Google Scholar 

  28. Clark, M. R., Unger, R. S. & Shohet, S. B. Blood 51, 1169–1178 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, V., Hockaday, A., Sepulveda, MI. et al. Compartmentalization of sickle-cell calcium in endocytic inside-out vesicles. Nature 315, 586–589 (1985). https://doi.org/10.1038/315586a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315586a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing