Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An immunoglobulin promoter displays cell-type specificity independently of the enhancer

Abstract

Recent studies in which cloned immunoglobulin genes were introduced into cultured cells have produced two significant findings. First, the genes are expressed after transfection into lymphoid cells but not non-lymphoid cells1–3. Second, transcription of an immunoglobulin gene requires, in addition to the promoter region, an enhancer element located downstream of the transcription start site4–10. These findings raise the question of whether it is the promoter or the enhancer region that is responsible for the observed cell-type specificity. It has, in fact, been shown that immunoglobulin enhancers function only in lymphoid cells6,8,9. We show here that the promoter for an immunoglobulin Îș light-chain gene also is strongly specific for lymphoid cells. Our result re-emphasizes the importance of promoters relative to enhancers in determining which cells express which genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Falkner, F. & Zachau, H. Nature 298, 286–288 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Stafford, J. & Queen, C. Nature 306, 77–79 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gillies, S. & Tonegawa, S. Nucleic Acids Res. 11, 7981–7997 (1983).

    Article  CAS  Google Scholar 

  4. Queen, C. & Baltimore, D. Cell 33, 741–748 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Queen, C. & Stafford, J. Molec. cell. Biol. 4, 1042–1049 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Picard, D. & Shaffner, W. Nature 307, 80–83 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Proc. natn. Acad. Sci. U.S.A. 81, 7041–7045.

  8. Gillies, S. D., Morrison, S. L., Oi, V. T. & Tonegawa, S. Cell 33, 717–728 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Banerji, J., Olson, L. & Schaffner, W. Cell 33, 729–740 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Neuberger, M. EMBO J. 2, 1373–1379 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seidman, J. G. & Leder, P. Nature 276, 79–795 (1978).

    Article  ADS  Google Scholar 

  12. Southern, P. J. & Berg, P. J. Molec. appl. Genet. 1, 327–341 (1982).

    CAS  Google Scholar 

  13. Deans, R., Denis, K. A., Taylor, A. & Wall, R. Proc. natn. Acad. Sci. U.S.A. 81, 1292–1296 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Tooze, J. (ed.) DNA Tumor Viruses (Cold Spring Harbor Laboratory, New York, 1980).

  15. de Villiers, J. & Schaffner, W. Nucleic. Acids Res. 9, 6251–6264 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laimins, L. A., Gruss, P., Pozzatti, R. & Khoury, G. J. Virol. 49, 183–189 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Max, E. E., Maizel, J. V. & Leder, P. J. biol. Chem. 256, 5116–5120 (1981).

    CAS  PubMed  Google Scholar 

  18. Laimins, L. A., Khoury, G., Gorman, C., Howard, B. & Gruss, P. Proc. natn. Acad. Sci. U.S.A. 79, 6453–6457 (1982).

    Article  ADS  CAS  Google Scholar 

  19. de Villers, J., Olson, L., Tyndall, C. & Schaffner, W. Nucleic Acids Res. 10, 7965–7975 (1982).

    Article  Google Scholar 

  20. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 6, 1175–1192 (1979).

    Article  Google Scholar 

  22. Reddy, V. B., Ghosh, P. K., Lebowitz, P., Piatak, M. & Weissman, S. M. J. Virol. 30, 279–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Falkner, F. G. & Zachau, H. G. Nature 310, 71–74 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Parslow, T. G., Blair, D. L., Murphy, W. J. & Granner, D. K. Proc. natn. Acad. Sci. U.S.A. 81, 2650–2654.

  25. Faulkner, F. G., Neumann, E. & Zachau, H. Hoppe-Seyler's Z. physiol. Chem. 365, 1331–1343.

  26. Lopata, M. A., Cleveland, D. W. & Sollner-Webb, B. Nucleic Acids Res. 12, 5707–5717 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, J., Stafford, J. & Queen, C. An immunoglobulin promoter displays cell-type specificity independently of the enhancer. Nature 315, 423–425 (1985). https://doi.org/10.1038/315423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315423a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing