Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neo-darwinian evolution implies punctuated equilibria

Abstract

The two central elements of neo-darwinian evolution1,2 are small random variations and natural selection. In Wright's view, these lead to random drift of mean population characters in a fixed, multiply peaked ‘adaptive landscape’, with long periods spent near fitness peaks3,4. Using recent theoretical results5, we show here that transitions between peaks are rapid and unidirectional even though (indeed, because) random variations are small and transitions initially require movement against selection. Thus, punctuated equilibrium6,7, the palaeontological pattern8,9 of rapid transitions between morphological equlibria, is a natural manifestation of the standard wrightian evolutionary theory and requires no special developmental, genetic or ecological mechanisms10–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mayr, E. Animal Species and Evolution (Harvard University Press, 1963).

    Book  Google Scholar 

  2. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974).

    Google Scholar 

  3. Wright, S. Proc. 6th int. Congr. Genet. Vol. 1, 356–366 (1932).

    Google Scholar 

  4. Wright, S. Evolution and the Genetics of Populations Vol. 3, 443–473: Vol. 4, 460–476 (University of Chicago Press, 1977, 1978).

    Google Scholar 

  5. Kipnis, C. & Newman, C. M. SIAM J. appl. Math. (in the press).

  6. Eldredge, N. & Gould, S. J. in Models in Paleobiology (ed. Schopf, T. J. M.) 82–115 (Freeman, San Francisco, 1972).

    Google Scholar 

  7. Gould, S. J. & Eldredge, N. Paleobiology 3, 115–151 (1977).

    Article  Google Scholar 

  8. Simpson, G. G. Tempo and Mode in Evolution (Columbia University Press, New York, 1944).

    Google Scholar 

  9. Simpson, G. G. The Major Features of Evolution (Columbia University Press, New York, 1953).

    Google Scholar 

  10. Hoffman, A. Evol. Biol. 15, 411–436 (1982).

    Article  Google Scholar 

  11. Maynard Smith, J. A. Rev. Genet. 17, 11–25 (1983).

    Article  Google Scholar 

  12. Geiger, G. Math. Biosci. 67, 59–79 (1983).

    Article  MathSciNet  Google Scholar 

  13. Kirkpatrick, M. Am. Nat. 119, 833–848 (1982).

    Article  Google Scholar 

  14. Lande, R. Evolution 30, 314–334 (1976).

    Article  Google Scholar 

  15. Galves, A., Olivieri, E. & Vares, M. E. Ann. Probabil. (submitted).

  16. MacBean, I. T., McKenzie, J. A. & Parsons, P. A. Theor. appl. Genet. 41, 227–235 (1971).

    Article  CAS  Google Scholar 

  17. Kellogg, D. E. Paleobiology 1, 359–370 (1975).

    Article  Google Scholar 

  18. Parsons, P. A. The Evolutionary Biology of Colonizing Species (Cambridge University Press, 1983).

    Book  Google Scholar 

  19. Wright, S. in Genetics, Paleontology and Evolution (eds Jepsen, G. L., Mayr, E. & Simpson, G. G.) 365–389 (Princeton University Press, 1949).

    Google Scholar 

  20. Ginzburg, L. Paleobiology 7, 426–429 (1981).

    Article  Google Scholar 

  21. Petry, D. Paleobiology 8, 56–66 (1982).

    Article  Google Scholar 

  22. Bookstein, F. L., Gingerich, P. D. & Kluge, A. G. Paleobiology 4, 120–134 (1978).

    Article  Google Scholar 

  23. Barton, N. H. & Charlesworth, B. A. Rev. Ecol. Systematics 15, 133–164 (1984).

    Article  Google Scholar 

  24. Fisher, M. E. Physics 3, 255–283 (1967).

    Article  Google Scholar 

  25. Langer, J. S. Ann. Phys. 41, 108–157 (1967).

    Article  ADS  CAS  Google Scholar 

  26. Faris, W. G. & Jona-Lasinio, G. J. Phys. A15, 3025–3055 (1982).

    ADS  MathSciNet  Google Scholar 

  27. Newman, C. M. & Schulman, L. S. J. statist. Phys. 23, 131–148 (1980).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, C., Cohen, J. & Kipnis, C. Neo-darwinian evolution implies punctuated equilibria. Nature 315, 400–401 (1985). https://doi.org/10.1038/315400a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315400a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing