Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae

Abstract

The pilus of the bacterium Neisseria gonorrhoeae is a fimbriate surface structure which promotes attachment of the bacterium to host epithelial cells1–4. Gonococcal pilus phase variation is characterized by a rapid on/off switch in which piliated (P+) cells throw off non-piliated (P) variants and vice versa. Two regions of the gonococcal chromosome (pilE1 and pilE2) act as pilin expression loci5, reminiscent of the MAT locus in the yeast Saccharomyces cerevisiae6, while several other chromosomal regions contain silent (non-expressing) pilin sequences5. Biochemical and antigenic diversity is seen in pili from a wide variety of clinical isolates7–11. Pilins (pilus subunits) are composed of conserved N-terminal and variable C-terminal regions12; the conserved region of gonococcal pilin is also found in pilins produced by widely disparate bacteria13–15. We show here that the gonococcal pilin undergoes antigenic variation in vitro and in vivo. The protein consists of constant, semi-variable and hypervariable regions. This antigenic variation probably involves gene conversion of mini-cassettes of pilin information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Swanson, J. J. exp. Med. 127, 571–589 (1973).

    Article  Google Scholar 

  2. Ward, M. E., Watt, P. J. & Robertson, J. N. J. infect. Dis. 129, 650–659 (1974).

    Article  CAS  Google Scholar 

  3. James-Holmequest, A. N., Swanson, J., Buchanan, T. M., Wende, R. D. & Williams, R. P. Infect. Immun. 9, 897–902 (1975).

    Google Scholar 

  4. Buchanan, T. M. & Pierce, W. A. Infect. Immun. 13, 1483–1489 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Myers, T. F., Billyard, E., Haas, R., Storzbach, S. & So, M. Proc. natn. Acad. Sci. U.S.A. 81, 6110–6114 (1984).

    Article  ADS  Google Scholar 

  6. Herskowitz, I. Curr. Topics dev. Biol. 18, 1–14 (1983).

    Article  CAS  Google Scholar 

  7. Buchanan, T. M. J. exp. Med. 141, 1470–1475 (1975).

    Article  CAS  Google Scholar 

  8. Robertson, J. N., Vincent, P. & Ward, M. E. J. gen. Microbiol. 102, 162–177 (1977).

    Article  Google Scholar 

  9. Brinton, C. C. et al. in Immunobiology of Neisseria gonorrhoeae (eds Brooks, G., Gotschlich, E. C., Holmes, K. K., Sawyer, S. & Young, F.) 155–178 (American Society for Microbiology, Washington, DC, 1978).

    Google Scholar 

  10. Lambden, P. R. J. gen. Microbiol. 128, 2105–2111 (1982).

    CAS  PubMed  Google Scholar 

  11. Virji, M. & Heckels, J. E. J. gen. Microbiol. 129, 2761–2768 (1983).

    CAS  PubMed  Google Scholar 

  12. Rothbard, J. B., Fernandez, R. & Schoolnik, G. K. J. exp. Med. 160, 208–221 (1984).

    Article  CAS  Google Scholar 

  13. Hermodson, M. A., Chen, K. C. S. & Buchanan, T. M. Biochemistry 17, 442–445 (1978).

    Article  CAS  Google Scholar 

  14. Sastry, P. A., Pearlstone, J. R., Smillie, L. B. & Paranchych, W. FEBS Lett. 151, 253–256 (1983).

    Article  CAS  Google Scholar 

  15. McKern, N. M., O'Donnell, I. J., Inglis, A. S., Stewart, D. J. & Clark, B. L. FEBS Lett. 164, 149–153 (1983).

    Article  CAS  Google Scholar 

  16. Hamlyn, P. H., Gait, M. J. & Milstein, C. Nucleic Acids Res. 9, 4485–4492 (1981).

    Article  CAS  Google Scholar 

  17. Segal, E., Billyard, E., So, M., Storbach, S. & Meyer, T. F. Cell 41 (in the press).

  18. Schoolnik, G. K., Fernandez, R., Tai, J. Y., Rothbard, J. & Gotschlich, E. C. J. exp. Med. 159, 1351–1370 (1984).

    Article  CAS  Google Scholar 

  19. Fletcher, J. D., Stratton, J., Chandler, C. S. & Sparling, P. F. CDC Morbid. Mortal. Wkly Rep. No. 32, 273–275 (1983).

  20. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Honjo, T. A. Rev. Immun. 1, 499–528 (1983).

    Article  CAS  Google Scholar 

  22. Yancopoulos, G. D. et al. Nature 311, 727–733 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Josephsen, J., Hansen, F., De Graaf, F. K. & Gaastra, W. FEBS Lett. (in the press).

  24. Weir, D. M. (ed.) Handbook of Experimental Immunology (Blackwell Scientific, Oxford, 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagblom, P., Segal, E., Billyard, E. et al. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315, 156–158 (1985). https://doi.org/10.1038/315156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315156a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing