Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly conducting acetylene–CO copolymers and limitations of the soliton model

Abstract

There is much scientific and technological interest in conductive polymers, of which polyacetylene is the simplest and best example, and in the mechanism of carrier transport. Trans-[CH]x with C2h symmetry is said1–4 to have an electronically degenerate ground state with very slight alternation of backbone bond lengths, that is, a high degree of conjugation. Radicals or radical ions in the chain are referred to as soliton5,6 and polaron7 excitations with moving domains, but these rigorous concepts are quite restrictive and exclusive. For instance, moving-domain excitations cannot exist in cis-[CH]x because much energy is required for the interconversion of cis-transoid and trans-cisoid structures. However, many physical and spectroscopic properties of undoped and doped trans-[CH]x have been explained by these models8. An intersoliton electron-hopping model had been proposed for carrier transport in lightly doped trans-[CH]x9. Our purpose here is to test the general validity of the soliton/polaron models. Our present results cast strong doubts on the relevance of these theoretical models to carrier transport in conductive polymers, thereby allowing a search for possible new conductive polymers that is free of the constraints imposed by these models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shirakawa, H. & Ikeda, S. Polym. J. 2, 231–244 (1971).

    Article  CAS  Google Scholar 

  2. Peierls, R. E. Quantum Theory of Solids, 108–110 (Clarendon, Oxford, 1955).

    MATH  Google Scholar 

  3. Chien, J. C. W., Karasz, F. E. & Shimamura, K. Makromol. Chem. Rapid Commun. 3, 655–659 (1982).

    Article  CAS  Google Scholar 

  4. Fincher, C. R. Jr, Chen, C. E., Heeger, A. J., MacDiarmid, A. G. & Hastings, J. B. Phys. Rev. Lett. 48, 100–104 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Phys. Rev. Lett. 42, 1698–1701 (1978).

    Article  ADS  Google Scholar 

  6. Rice, M. J. Phys. Lett. 71 A, 152–154 (1979).

    Article  Google Scholar 

  7. Campbell, D. K. & Bishop, A. R. Phys. Rev. B 24, 4859–4862 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Chien, J. C. W. Polyacetylene—Chemistry, Physics and Material Science (Academic, New York, 1984).

    Google Scholar 

  9. Kivelson, S. Phys. Rev. B 25, 3798–3821 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Chien, J. C. W., Capistran, J. D., Karasz, F. E., Dickinson, L. C. & Sehen, M. A. J. polym. Sci. polym. Lett. Ed 21, 93 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Chien, J. C. W., Karasz, F. E., Schen, M. A. & Hirsch, J. A. Macromolecules 16, 1694–1697 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Schen, M. A., Karasz, F. E. & Chien, J. C. W. J. polym. Sci. polym. Chem. Ed 21, 2787–2812 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Chien, J. C. W. & Babu, G. N. Macromolecules (in the press).

  14. Bellamy, L. J. The Infra-red Spectrum of Complex Molecules, 1–132 (Wiley, New York, 1958).

    Google Scholar 

  15. Karasz, F. E. et al. Nature 282, 286–288 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Chien, J. C. W. et al. Nature 299, 608–611 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Shimamura, K., Karasz, F. E., Hirsch, J. A. & Chien, J. C. W. Makromol. Chem. Rapid Commun. 2, 473–480 (1981).

    Article  CAS  Google Scholar 

  18. Chien, J. C. W., Karasz, F. E. & Shimamura, K. Macromolecules 15, 1012–1017 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Chien, J. C. W., Karasz, F. E., Wnek, G. E., MacDiarmid, A. G. & Heeger, A. J. J. polym. Sci. polym. Lett. Ed 18, 45–52 (1979).

    Article  Google Scholar 

  20. Chien, J. C. W., Uden, P. C. & Fan, J. L. J. polym. Sci. polym. Chem. Ed 20, 2159–2167 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Weinberger, B. R., Ehrenfreund, E., Pron, A., Heeger, A. J. & MacDiarmid, A. G. J. chem. Phys. 72, 4749 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Yaniger, S. I., Kletter, M. J. & MacDiarmid, A. G. 188th Am. Chem. Soc. Abstr. Polym. 154, (Philadelphia, 1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, J., Babu, G. & Hirsch, J. Highly conducting acetylene–CO copolymers and limitations of the soliton model. Nature 314, 723–724 (1985). https://doi.org/10.1038/314723a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314723a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing