Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo

Abstract

The recognition that the endoplasmic reticulum (ER), rather than the mitochondria, is the main organelle regulating the cytoplasmic Ca2+ concentration in non-muscle cells1,2 supports the notion that an alternative physiological role of mitochondrial Ca transport3–5 is the modulation of Ca-sensitive mitochondrial enzymes through small (micromolar) fluctuations in the concentration of mitochondrial matrix Ca2+ (refs 1,5–7). The latter mechanism could operate only if the mitochondrial Ca concentration were low, as it is in muscle and retinal rods8,9, below the levels saturating the regulated enzymes5. In contrast, if the ER serves as an intracellular Ca store, its Ca content would be expected to be high. In view of the major metabolic function of the liver, the question of whether hepatic mitochondrial matrix Ca2+ regulates metabolism is particularly important, but the range of Ca concentrations reported for isolated liver mitochondria is too wide10–12 to provide a conclusive answer. Therefore, we have used electron probe X-ray microanalysis (EPMA) to measure the subcellular distribution of Ca in liver snap-frozen in vivo, and report here that the endoplasmic reticulum is a major intracellular store of Ca, while the concentration of Ca in mitochondria is low and compatible with the regulation of mitochondrial enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Somlyo, A. P. Nature 309, 516–517 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Martonosi, A. N. in Muscle and Nonmuscle Motility Vol. 1 (ed. Stracher, A.) 233 (Academic, New York, 1983).

    Book  Google Scholar 

  3. Carafoli, E. & Crompton, M. Ann. N.Y. Acad. Sci. 307, 269–284 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Scarpa, A. in Membrane Transort in Biology II (eds Giebisch, G., Tosteson, D. C. & Ussing, H. H.) 263–355 (Springer, New York, 1979).

    Google Scholar 

  5. Hansford, R. G. Rev. Physiol. biochem. Physiol. (in the press).

  6. Denton, R. M. & McCormack, J. G. FEBS Lett. 119, 1–8 (1980).

    Article  CAS  Google Scholar 

  7. Carafoli, E. in Exercise Bioenergetics and Gas Exchange (eds Cerretelli, P. & Whipp, B. J.) 3–12 (North-Holland, Amsterdam, 1980).

    Google Scholar 

  8. Somlyo, A. P. & Walz, B. J. Physiol., Lond. 358, 183–195 (1985).

    Article  CAS  Google Scholar 

  9. Bond, M., Shuman, H., Somlyo, A. V. & Somlyo, A. P. J. Physiol., Lond. 357, 185–201 (1984).

    Article  CAS  Google Scholar 

  10. Reinhart, P. H., van de Pol, E., Taylor, W. M. & Bygrave, F. L. Biochem. J. 218, 415–420 (1984).

    Article  CAS  Google Scholar 

  11. Becker, G. L., Fiskum, G. & Lehninger, A. L. J. biol. Chem. 255, 9009–9012 (1980).

    CAS  PubMed  Google Scholar 

  12. Joseph, S. K., Coll, K. E., Cooper, R. H., Marks, J. S. & Williamson, J. R. J. biol. Chem. 258, 731–741 (1983).

    CAS  PubMed  Google Scholar 

  13. Bookchin, R. M. & Lew, V. L. Nature 284, 561–563 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Howard, R. B., Lee, J. C. & Pesch, L. A. J. Cell Biol. 57, 642–658 (1973).

    Article  CAS  Google Scholar 

  15. Coll, K. E., Joseph, S. K., Corkey, B. E. & Williamson, J. R. J. biol. Chem. 257, 8696–8704 (1982).

    CAS  PubMed  Google Scholar 

  16. Blackmore, P. F., Dehaye, J.-P. & Exton, J. H. J. biol. Chem. 254, 6945–6950 (1979).

    CAS  PubMed  Google Scholar 

  17. Babcock, D. F., Chen, J.-L.J., Yip, B. P. & Lardy, H. A. J. biol. Chem. 254, 2117–2120 (1979).

    Google Scholar 

  18. Dawson, A. P. Biochem. J. 206, 73–79 (1982).

    Article  CAS  Google Scholar 

  19. Hamilton, M. G. & Peterman, M. L. J. biol. Chem. 234, 1441–1446 (1959).

    CAS  PubMed  Google Scholar 

  20. Siekevitz, P. & Palade, G. E. J. biophys. biochem. Cytol. 7, 631–644 (1960).

    Article  CAS  Google Scholar 

  21. Sudhof, T. C. Biochem. biophys. Res. Commun. 123, 100–107 (1984).

    Article  CAS  Google Scholar 

  22. Waisman, D. W., Smallwood, J., Lafreniere, D. & Rasmussen, H. Biochem. biophys. Res. Commun. 119, 440–446 (1984).

    Article  CAS  Google Scholar 

  23. Weibel, E. R., Staubli, W., Guagi, R. & Hess, F. A. J. Cell Biol. 42, 68–91 (1969).

    Article  CAS  Google Scholar 

  24. Loud, A. V. J. Cell Biol. 37, 27–46 (1968).

    Article  CAS  Google Scholar 

  25. van Rossum, G. D. V. J. gen. Physiol. 55, 18–31 (1970).

    Article  CAS  Google Scholar 

  26. Hansford, R. G. & Castro, F. J. Bioenerg, Biomembranes 14, 361–376 (1982).

    Article  CAS  Google Scholar 

  27. Berridge, M. J. Biochem. J. 212, 849–858 (1983).

    Article  CAS  Google Scholar 

  28. Burgess, G. M. et al. Nature 309, 63–66 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Dawson, A. P. & Irvine, R. F. Biochem. biophys. Res. Commun. 120, 858–864 (1984).

    Article  CAS  Google Scholar 

  30. Joseph, S. K., Thomas, A. P., Williams, R. J., Irvine, R. F. & Williamson, J. R. J. biol. Chem. 259, 3077–3081 (1984).

    CAS  Google Scholar 

  31. Hall, T. A. & Gupta, B. L. Q. Rev. Biophys. 16, 279–330 (1983).

    Article  CAS  Google Scholar 

  32. Somlyo, A. V., Gonzalez-Serratos, H., Shuman, H., McClellan, G. & Somlyo, A. P. J. Cell Biol. 90, 577–594 (1981).

    Article  CAS  Google Scholar 

  33. Shuman, H., Somlyo, A. V. & Somlyo, A. P. Ultramicroscopy 1, 317–339 (1976).

    Article  CAS  Google Scholar 

  34. Kitazawa, T., Shuman, H. & Somlyo, A. P. Ultramicroscopy 11, 251–262 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somlyo, A., Bond, M. & Somlyo, A. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314, 622–625 (1985). https://doi.org/10.1038/314622a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314622a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing