Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Similarity between the vaccinia virus 19K early protein and epidermal growth factor

Abstract

An analysis of the 1,217-amino acid residue sequence of the precursor of mouse epidermal growth factor (mEGF)1 revealed regions of considerable similarity with bovine factor X, a blood coagulation factor. Similarities of mEGF itself with factor X2, pancreatic secretory trypsin inhibitor3 and, most strikingly, transforming growth factor I (TGF-I)4,5 have been observed. On the basis of the comparisons described here, it seems that the presumptive 140-residue 19K early protein (relative molecular mass (Mr) 19,000) of vaccinia virus6 from residues 40–91 shows an overall identity of 36% (19/53 residues) with both mEGF and urogastrone (human epidermal growth factor, hEGF); a single deletion is assumed for vaccinia virus 19K protein which allows the six Cys residues (positions 45–80) to be aligned with those of mEGF or hEGF. This protein is encoded in the 10.3-kilobase (kb) inverted terminal repeat6. Because it is an early protein with an EGF-like central portion, the 19K vaccinia virus protein may have an autocrine function and may be required for DNA synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Doolittle, R. F., Feng, D. G. & Johnson, M. S. Nature 307, 558–560 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Dayhoff, M. O. Atlas of Protein Sequences and Structures Vol. 5, Suppl. 1–3 (Natn. Biomed. Res. Fdn, Washington, DC, 1978).

    Google Scholar 

  3. Hunt, L. T., Barker, W. & Dayhoff, M. O. Biochem. biophys. Res. Commun. 60, 1020–1028 (1974).

    Article  CAS  Google Scholar 

  4. Marquardt, H. et al. Science 223, 1079–1082 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Tam, J. P. et al. 309, 376–378 (1984).

  6. Venkatesan, S., Gershowitz, A. & Moss, B. J. Virol. 44, 637–646 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wittek, R. & Moss, B. Cell 21, 277–284 (1980).

    Article  CAS  Google Scholar 

  8. Moss, B. in Human Viral Diseases Vol. 1 (Raven, New York, in the press).

  9. Paoletti, E. & Grady, L. J. J. Virol. 23, 608–615 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Boone, R. F. & Moss, B. J. Virol. 26, 554–569 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wittek, R., Richner, B. & Hiller, G. Nucleic Acids Res. 12, 4835–4848 (1984).

    Article  CAS  Google Scholar 

  12. Cooper, J. A., Wittek, R. & Moss, B. J. Virol. 37, 284–294 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gray, A., Dull, T. J. & Ullrich, A. Nature 303, 722–725 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Scott, J. et al. Science 221, 236–240 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Staden, R. Nucleic Acids Res. 10, 2951–2961 (1982).

    Article  CAS  Google Scholar 

  16. McLachlan, A. D. J. molec. Biol. 61, 409–424 (1971).

    Article  CAS  Google Scholar 

  17. Novotny, J. & Auffray, C. Nucleic Acids Res. 12, 243–255 (1984).

    Article  CAS  Google Scholar 

  18. Kanehisa, M., Klein, P., Greif, P. & DeLisi, C. Nucleic Acids Res. 12, 417–428 (1984).

    Article  CAS  Google Scholar 

  19. Chou, P. Y. & Fasman, G. D. Adv. Enzym. 47, 45–148 (1978).

    CAS  Google Scholar 

  20. Rose, G. D. & Roy, S. Proc. natn. Acad. Sci. U.S.A. 77, 4643–4647 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisner, A. Similarity between the vaccinia virus 19K early protein and epidermal growth factor. Nature 313, 801–803 (1985). https://doi.org/10.1038/313801a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313801a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing