Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of chick skeletal muscle cells in groups of 16 from stem cells

Abstract

The commonly accepted hypothesis explaining the control of skeletal muscle differentiation is that all myogenic precursor cells are equivalent and that they differentiate into post-mitotic muscle cells in response to exogenous signals, specifically low mitogen concentrations1,2. Large clones derived from vertebrate myogenic cells, however, consist both of cycling precursors and of terminally differentiated, post-mitotic muscle cells3–7. Here, we count the total number of cells and the number of terminally differentiated cells (or nuclei, in fused cells) in large myogenic clones. The number of terminally differentiated cells per clone was usually equal to or just below a multiple of 16. This finding is not expected from a model postulating a homogeneous population of muscle precursor cells. Rather, our results suggest that a self-renewing stem cell exists in the skeletal muscle lineage. This cell can generate committed precursors which then give rise to cohorts of 16 terminally differentiated muscle cells. This model of myogenesis provides a simple explanation for the protracted and asynchronous nature of muscle differentiation in vertebrate embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Konigsberg, I. R. Devl Biol. 26, 133–152 (1971).

    Article  CAS  Google Scholar 

  2. Konigsberg, I. R. in Pathogenesis of the Human Muscular Dystrophies (ed. Rowland, L.P.) 779–798 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  3. Konigsberg, I. R. Science 140, 1273–1284 (1963).

    Article  ADS  CAS  Google Scholar 

  4. Linkhart, T. A. & Hauschka, S. D. Devl Biol. 69, 529–548 (1979).

    Article  CAS  Google Scholar 

  5. Hauschka, S. D. Devl Biol. 37, 329–344 (1978).

    Article  Google Scholar 

  6. Abbott, J., Schiltz, J., Dienstman, S. & Holtzer, H. Proc. natn. Acad. Sci. U.S.A. 71, 1506–1510 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Quinn, L. S., Nameroff, M. & Holtzer, H. Expl Cell Res. 154, 65–82 (1984).

    Article  CAS  Google Scholar 

  8. Kligman, D. & Nameroff, M. Expl Cell Res. 127, 237–247 (1980).

    Article  CAS  Google Scholar 

  9. Quinn, L. S. & Nameroff, M. Differentiation 24, 111–123 (1983).

    Article  CAS  Google Scholar 

  10. Quinn, L. S. & Nameroff, M. Differentiation 24, 124–130 (1983).

    Article  CAS  Google Scholar 

  11. Robinson, M., Quinn, L. S. & Nameroff, M. Differentiation 26, 112–120 (1984).

    Article  CAS  Google Scholar 

  12. Sternberger, L. A. Immunocytochemistry(Wiley, New York, 1979).

  13. Capers, C. R. J. biophys. biochem. Cytol. 7, 559–566 (1960).

    Article  CAS  Google Scholar 

  14. Caplan, A. I., Fiszman, M. Y. & Eppenberger, H. M. Science 221, 921–927 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Houseman, D. & Levenson, R. Cell 25, 5–6 (1981).

    Article  Google Scholar 

  16. Alberts, B. et al. Molecular Biology of the Cell (Garland, New York, 1983).

    Google Scholar 

  17. Devlin, R. B. & Emerson, C. P. Cell 13, 599–611 (1978).

    Article  CAS  Google Scholar 

  18. Holtzer, H., Marshall, J. M. & Finck, H. J. biophys. biochem. Cytol. 3, 705–723 (1957).

    Article  CAS  Google Scholar 

  19. Okazaki, K. & Holtzer, H. J. Histochem. Cytochem. 13, 726–739 (1965).

    Article  CAS  Google Scholar 

  20. Yeoh, G. C. T. & Holtzer, H. Expl Cell Res. 104, 63–78 (1977).

    Article  CAS  Google Scholar 

  21. O'Neill, M. C. Devl Biol. 53, 190–205 (1976).

    Article  CAS  Google Scholar 

  22. Devlin, B. H., Merrifield, P. A. & Konigsberg, I. R. in Muscle Development. Molecular and Cellular Control (eds Pearson, M. L. & Epstein, H. F.) 355–366 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  23. Dienstman, S. R. & Holtzer, H. in Results and Problems in Cell Differentiation (eds Reinert, J. & Holtzer, H.) 1–25 (Springer, New York, 1975).

    Google Scholar 

  24. Holtzer, H. in Stem Cells and Tissue Homeostasis (eds Lord, B. I., Potten, C. S. & Cole, R. J.) 1–28 (Cambridge University Press, 1978).

    Google Scholar 

  25. Nadal-Ginard, B. Cell 15, 855–864 (1978).

    Article  CAS  Google Scholar 

  26. Linkhart, T. A., Clegg, C. H. & Hauschka, S. D. Devl Biol. 86, 19–30 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, L., Holtzer, H. & Nameroff, M. Generation of chick skeletal muscle cells in groups of 16 from stem cells. Nature 313, 692–694 (1985). https://doi.org/10.1038/313692a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313692a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing