Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells

Abstract

Human tumours often contain DNA sequences not found in normal tissues which are able to transform cultured NIH 3T3 cells. In some tumours the gene responsible for this transformation belongs to the cellular ras gene family1,2. A specific type of mutation is responsible for converting the cellular proto-oncogene into a ras oncogene capable of inducing transformation3–5. In a study of the function of a cellular ras gene, its protein product (produced in a bacterial cell) was microinjected into NIH 3T3 cells; the recipient cells became morphologically transformed and were induced to initiate DNA synthesis in the absence of added serum6, but only when cellular ras protein was injected at much higher concentrations than required with protein of the transforming ras gene6,7. To further analyse the function of the cellular ras gene, we have now injected monoclonal antibodies against ras proteins into NIH 3T3 cells. We report here that NIH 3T3 cells induced to divide by adding serum to the culture medium are unable to enter the S phase of the cell cycle after microinjection of anti-ras antibody, showing that the protein product of the ras proto-oncogene is required for initiation of the S-phase in NIH 3T3 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parada, L. F., Tabin, C. J., Shih, C. & Weinberg, R. A. Nature 297, 474–478 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Santos, E., Tronick, S. R., Aaronson, S. A., Pulciani, S. & Barbacid, M. Nature 298, 343–347 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Tabin, C. J. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Taparowsky, E. et al. Nature 300, 762–765 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Stacey, D. W. & Kung, H.-F. Nature 310, 508–511 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Feramisco, J. R., Gross, M., Kamata, T., Rosenberg, M. & Sweet, R. W. Cell 38, 109–117 (1984).

    Article  CAS  Google Scholar 

  8. Furth, M. E., Davis, L. J., Fleurdelys, B. & Scolnick, E. M. J. Virol. 43, 294–304 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stacey, D. W. & Allfrey, V. G. J. Cell Biol. 75, 807–817 (1977).

    Article  CAS  Google Scholar 

  10. Pledger, W. J., Stiles, C. D., Antoniades, H. W. & Scher, C. D. Proc. natn. Acad. Sci. U.S.A. 74, 4481–4485 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Loef, E. B., Wharton, W., Van Wyk, J. J. & Pledger, W. J. Expl Cell Res. 141, 107–115 (1982).

    Article  Google Scholar 

  12. Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596–602 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Ruley, H. E. Nature 304, 602–606 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Newbold, R. F. & Overell, R. W. Nature 304, 648–651 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Waterfield, M. D. et al. Nature 304, 35–39 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Doolittle, R. F. et al. Science 221, 275–277 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Downward, J. et al. Nature 307, 521–527 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  19. Campisi, J., Gray, H. E., Pardee, A. B., Dean, M. & Sonenshein, G. E. Cell 36, 241–247 (1984).

    Article  CAS  Google Scholar 

  20. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Kruijer, W., Cooper, J. A., Hunter, T. & Verma, I. M. Nature 312, 711–716 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Müller, R., Bravo, R., Burkhardt, J. & Curran, T. Nature 312, 716–720 (1984).

    Article  ADS  Google Scholar 

  23. Mercer, W. E., Avignolo, C. & Baserga, R. Molec. cell. Biol. 4, 276–281 (1984).

    Article  CAS  Google Scholar 

  24. Ellis, R. W. et al. Nature 292, 506–511 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Shimizu, K. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2112–2116 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulcahy, L., Smith, M. & Stacey, D. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313, 241–243 (1985). https://doi.org/10.1038/313241a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313241a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing