Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thinning of the lithosphere by small-scale convective destabilization

Abstract

Gravitational, topographical and seismological studies of uplift regions around hot spots on oceanic,1,2 and continental plates3–7 have suggested that considerable lithospheric thinning has taken place beneath these areas. Previous models used to study this phenomenon have been based on thermal conduction8–11 and on the dynamic interaction between large-scale plume structures12 and the lithosphere, for a purely temperature-dependent viscosity. However, their predictions of the time scale for direct erosion12 of the lithosphere by these upwellings are too long. We propose here a new dynamical mechanism which works most efficiently for a temperature and pressure-dependent rheology. Our idea is that thinning of the lithosphere is accomplished by strong secondary convection enhanced by the presence of a low-viscosity zone which grows from a plume associated with a hot spot. This process is capable of producing the rapid time scale of the swell uplift13, of the order of 10 Myr, and the rates of thinning, of order 10 km Myr−1, required by both geophysical13,14 and geochemical15 observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crough, S. T. Geophys. J.R. astr. Soc. 55, 451–469 (1978).

    Article  ADS  Google Scholar 

  2. Haxby, W. F. & Turcotte, D. L. J. geophys. Res. 83, 5478–5487 (1978).

    Article  Google Scholar 

  3. Crough, S. T. Tectonophysics 77, 189–202 (1981).

    Article  ADS  Google Scholar 

  4. Crough, S. T. Geophys. Res. Lett. 8, 877–879 (1981).

    Article  ADS  Google Scholar 

  5. Brott, C. A., Blackwell, D. D. & Ziagos, J. P. J. geophys. Res. 86, 11709–11734 (1981).

    Article  ADS  Google Scholar 

  6. Yegorkin, A. V. & Pavlenkova, N. I. Phys. Earth planet. Int. 25, 12–26 (1981).

    Article  ADS  Google Scholar 

  7. Maguire, P. K. H. & Long, R. E. Geophys. J.R. astr. Soc. 44, 661–675 (1976).

    Article  ADS  Google Scholar 

  8. Spohn, T. & Schubert, G. J. geophys. Res. 87, 4669–4781 (1982).

    Article  ADS  Google Scholar 

  9. Crough, S. T. & Thompson, G. A. Earth planet. Sci. Lett. 31, 397–402 (1976).

    Article  ADS  Google Scholar 

  10. Mareschal, J. C. Tectonophysics 94, 51–66 (1983).

    Article  ADS  Google Scholar 

  11. Morgan, P. Tectonophysics 94, 277–298 (1983).

    Article  ADS  Google Scholar 

  12. Emerman, S. H. & Turcotte, D. L. J. Fluid Mech. 127, 507–517 (1983).

    Article  ADS  Google Scholar 

  13. Heestand, R. L. & Crough, S. T. J. geophys. Res. 86, 6107–6114 (1981).

    Article  ADS  Google Scholar 

  14. Detrick, R. S. & Crough, S. T. J. geophys. Res. 83, 1236–1244 (1978).

    Article  ADS  Google Scholar 

  15. Wendlandt, R. F. & Morgan, P. Nature 298, 734–736 (1982).

    Article  ADS  Google Scholar 

  16. Crough, S. T. A. Rev. Earth planet. Sci. 11, 165–193 (1983).

    Article  ADS  Google Scholar 

  17. Sclater, J. G. Earth planet. Sci. Lett. 51, 139–162 (1980).

    Article  ADS  Google Scholar 

  18. Bird, P. J. geophys. Res. 84, 7561–7571 (1979).

    Article  ADS  Google Scholar 

  19. Bridwell, R. J. in Tectonics and Geophysics of Continental Rifts (ed. Ramberg, H. B. & Newman, E. R.) 73–80 (Reidel, Dordrecht-Boston, 1977).

    Google Scholar 

  20. Neugebauer, H. J. Tectonophysics 94, 91–108 (1983).

    Article  ADS  Google Scholar 

  21. Parmentier, E. M., Turcotte, D. L. & Torrance, K. E. J. geophys. Res. 80, 4417–4424 (1975).

    Article  ADS  Google Scholar 

  22. Christensen, U. R. Anns Geophysicae 2, 311–320 (1984).

    ADS  Google Scholar 

  23. Whitehead, J. A. & Luther, D. S. J. geophys. Res. 80, 705–717 (1975).

    Article  ADS  Google Scholar 

  24. Olson, P. L. & Singer, H. J. Fluid Mech. (in the press).

  25. Richter, F. M. & Parsons, B. E. J. geophys. Res. 80, 2529–2541 (1975).

    Article  ADS  Google Scholar 

  26. Parsons, B. E. & McKenzie, D. P. J. geophys. Res. 83, 4485–4496 (1978).

    Article  ADS  Google Scholar 

  27. Clever, R. M. & Busse, F. H. J. Fluid Mech. 65, 625–645 (1974).

    Article  ADS  Google Scholar 

  28. Gough, D. O., Spiegel, E. A. & Toomre, J. J. Fluid Mech. 68, 695–719 (1975).

    Article  ADS  Google Scholar 

  29. Fleitout, L. & Yuen, D. A. J. geophys. Res. 89, 9227–9244 (1984).

    Article  ADS  Google Scholar 

  30. Kushiro, I., Syono, Y. & Akimoto, S. J. geophys. Res. 73, 6023–6029 (1968).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuen, D., Fleitout, L. Thinning of the lithosphere by small-scale convective destabilization. Nature 313, 125–128 (1985). https://doi.org/10.1038/313125a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313125a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing