Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible association of myosin with the platelet cytoskeleton

Abstract

Platelets circulating in the human blood stream are smooth disk-shaped structures. The disks change within seconds of exposure to ADP or thrombin to irregular spheres bearing filopodia and pseudopodia. It is well-established that platelets also change shape (although more slowly) when chilled to 5°C1–5 and revert to disks on rewarming1,3. This cold-induced shape change may be due to the depolymerization of the submembranous microtubule ring. However, we found that chilling in the presence of Taxol, which stabilizes the microtubules, still results in shape change. Chilled platelets show an increase in the amount of myosin in the Triton-X insoluble residue or ‘cytoskeleton’6–9 which is correlated in time both with phosphorylation of the myosin regulatory light chain and with the induced shape change. We suggest here that the slow cold-induced change from disks to spheres is due primarily to a gradual activation of myosin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Behnke, O. Int. Rev. exp. Path. 9, 1–92 (1970).

    CAS  PubMed  Google Scholar 

  2. Bennett, W. F. & Lynch, G. J. Cell. Biol. 86, 280–285 (1980).

    Article  CAS  Google Scholar 

  3. White, J. G. & Krumwiede, M. Blood 41, 823–832 (1973).

    CAS  PubMed  Google Scholar 

  4. White, J. G. Am. J. Path. 108, 184–195 (1984).

    Google Scholar 

  5. Zucker, M. B. & Borrelli, J. Blood 9, 602–608 (1954).

    CAS  PubMed  Google Scholar 

  6. Fox, J. E. B. & Phillips, D. R. J. biol. Chem. 257, 4120–4126 (1982).

    CAS  PubMed  Google Scholar 

  7. Gonnella, P. A. & Nachmias, V. T. J. Cell Biol. 89, 746–751 (1981).

    Article  Google Scholar 

  8. Lucas, R. C., Rosenberg, S., Shafiq, S., Stracher, A. & Lawrence, J. Protides Biol. Fluids 26, 465–470 (1978).

    CAS  Google Scholar 

  9. Nachmias, V. T. J. Cell Biol. 86, 795–802 (1980).

    Article  CAS  Google Scholar 

  10. Hayashi, M., Ohnishi, K. & Hayashi, K. J. Biochem. (Tokyo) 87, 1347–1355 (1980).

    Article  CAS  Google Scholar 

  11. Shimo-Oka, T., Hayashi, M. & Satanabe, Y. Biochemistry 21, 4921–4926 (1980).

    Article  Google Scholar 

  12. Connolly, T. M. & Limbird, L. E. Proc. natn. Acad. Sci. U.S.A. 80, 5320–5324 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Feinberg, H. W. et al. Biochim. biophys Acta 470, 317–324 (1977).

    Article  CAS  Google Scholar 

  14. Leven, R. M., Mullikin, W. H. & Nachmias, V. T. J. Cell Biol. 96, 1234–1240 (1983).

    Article  CAS  Google Scholar 

  15. Nachmias, V. T. Sem. Haemat. 20, 261–281 (1983).

    CAS  Google Scholar 

  16. Sandler, W. C., Le Breton, G. C. & Feinberg, H. Biochim. biophys. Acta. 600, 448–455 (1980).

    Article  CAS  Google Scholar 

  17. Leven, R. M., Gonnella, P.A., Reeber, M. J. & Nachmias, V. T. Thromb. Haemostasis 49, 230–234 (1983).

    CAS  Google Scholar 

  18. Daniel, J. L., Molish, I. R. & Holmsen, H. L. J. biol. Chem. 256, 7510–7514 (1981).

    CAS  PubMed  Google Scholar 

  19. Dabrowska, R. & Hartshorne, D. J. Biochem. biophys. Res. Comm. 85, 1352–1359 (1978).

    Article  CAS  Google Scholar 

  20. Hathaway, D. R. & Adelstein, R. S. Proc. natn. Acad. Sci. U.S.A. 76, 1653–1657 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Craig, R., Smith, R. & Kendrick-Jones, J. Nature 302, 436–439 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Scholey, J. M., Taylor, M. A. & Kendrick-Jones, J. Nature 287, 233–235 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Trybus, K. M., Huiatt, T. W. & Lowey, S. Proc. natn. Acad. Sci. U.S.A. 79, 6151–6155 (1981).

    Article  ADS  Google Scholar 

  24. Cox, A. C., Carroll, R. C., White, J. C. & Rao, G. H. R. J. Cell Biol. 98, 8–15 (1984).

    Article  CAS  Google Scholar 

  25. Trotter, J. A. Biochem. biophys. Res. Comm. 106, 1071–1077 (1982).

    Article  CAS  Google Scholar 

  26. Daniel, J. L., Molisch, I. R., Rigmaiden, M. & Stewart, G. J. biol. Chem. 259, 9826–9831 (1984).

    CAS  PubMed  Google Scholar 

  27. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachmias, V., Kavaler, J. & Jacubowitz, S. Reversible association of myosin with the platelet cytoskeleton. Nature 313, 70–72 (1985). https://doi.org/10.1038/313070a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313070a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing