Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Models of rapidly rotating neutron stars

Abstract

Interest in rapidly rotating neutron stars has been reinforced by the discovery of the fast pulsar PSR1937 + 214 (ref. 1). Here we report results of the first numerical construction of rapidly rotating relativistic stars based on equations of state (EOS) proposed for neutron-star matter. Of nine EOS considered, none permits uniformly rotating equilibrium configurations for which the ratio T/W of rotational energy to gravitational energy exceeds 0.12. Thus whereas a rotating neutron star spun up by accretion or formed by collapse of a rapidly rotating dwarf can be unstable2–7 to modes with angular dependence ei for m = 3 or 4, instability to a bar mode (m = 2) appears very unlikely. For the stiffest EOS and for stellar masses near the Chandrasekhar mass (baryon mass M0 ≈ 1.4 M), the upper limiting rotational frequencies imposed by the m = 3 or m = 4 instability are approximately equal to the frequency of the fast pulsar; for the softer EOS, the corresponding limiting frequencies are significantly larger. Uniform rotation increases the maximum gravitational mass of a model by an amount ranging from 14% for the softest models to 30% for the stiffest models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M. & Goss, W. M. Nature 300, 615–618 (1982).

    Article  ADS  Google Scholar 

  2. Papaloizou, J. & Pringle, J. E. Mon. Not. R. astr. Soc. 184, 501–508 (1978).

    Article  ADS  Google Scholar 

  3. Wagoner, R. V. Astrophys. J. 278, 345–348 (1984).

    Article  ADS  Google Scholar 

  4. Friedman, J. L. Phys. Rev. Lett. 51, 11–14 (1983).

    Article  ADS  Google Scholar 

  5. Harding, A. K. Nature 303, 683–684 (1983).

    Article  ADS  Google Scholar 

  6. Ray, A. & Chitre, S. M. Nature 303, 409–410 (1983).

    Article  ADS  Google Scholar 

  7. Cowsik, R., Ghosh, P. & Melvin, M. A. Nature 303, 308–310 (1983).

    Article  ADS  Google Scholar 

  8. Hartle, J. B. & Thorne, K. S. Astrophys. J. 153, 807–834 (1968).

    Article  ADS  Google Scholar 

  9. Bardeen, J. M. & Wagoner, R. V. Astrophys. J. 167, 359–423 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  10. Wilson, J. R. Astrophys. J. 176, 195–204 (1972).

    Article  ADS  Google Scholar 

  11. Bonazzola, S. & Schneider, J. Astrophys. J. 191, 273–285 (1974).

    Article  ADS  Google Scholar 

  12. Butterworth, E. M. & Ipser, J. R. Astrophys. J. 204, 200–223 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  13. Butterworth, E. M. Astrophys. J. 204, 561–572 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  14. Arnett, W. D. & Bowers, R. L. Astrophys. J. Suppl. 33, 415–436 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Pandharipande, V. & Smith, R. A. Nucl. Phys. A 237, 507–532 (1975).

    Article  Google Scholar 

  16. Walecka, J. D. Ann. Phys. 83, 491–529 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Bowers, R. L., Gleeson, A. M. & Pedigo, R. D. Phys. Rev. D 12, 3043–3055 (1975).

    ADS  CAS  Google Scholar 

  18. Bethe, H. A. & Johnson, M. Nucl. Phys. A 230, 1–58 (1974).

    Article  Google Scholar 

  19. Arponen, J. Nucl. Phys. A 191, 257–282 (1972).

    Article  CAS  Google Scholar 

  20. Pandharipande, V. Nucl. Phys. A 174, 641–656 (1971).

    Article  CAS  Google Scholar 

  21. Pandharipande, V. Nucl. Phys. A 178, 123–144 (1971).

    Article  CAS  Google Scholar 

  22. Canuto, V. & Chitre, S. M. Phys. Rev. D 9, 1587–1613 (1974).

    ADS  CAS  Google Scholar 

  23. Chandrasekhar, S. Phys. Rev. Lett. 24, 611–615 (1970).

    Article  ADS  Google Scholar 

  24. Friedman, J. L. & Schutz, B. F. Astrophys. J. 222, 281–296 (1978).

    Article  ADS  Google Scholar 

  25. Friedman, J. L. Commun. math. Phys. 62, 247–278 (1978).

    Article  ADS  Google Scholar 

  26. Lindblom, L. & Detweiler, S. L. Astrophys. J. 211, 565–567 (1977).

    Article  ADS  Google Scholar 

  27. Comins, N. Mon. Not. R. astr. Soc. 189, 233–253 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  28. Hiscock, W. A. & Lindblom, L. Ann. Phys. 151, 466–496 (1983).

    Article  ADS  Google Scholar 

  29. Imamura, J., Friedman, J. L. & Durisen, R. Preprint, Los Alamos National Laboratory (1984).

  30. Managan, R. Preprint, Univ. Florida (1984).

  31. Balbinski, E., Detweiler, S., Lindblom, L. & Schutz, B. Preprint, Univ. Florida (1984).

  32. Lindblom, L. Astrophys. J. 278, 354–368 (1984).

    Article  ADS  Google Scholar 

  33. Friedman, J. L. Commun. math. Phys. 63, 243–255 (1978).

    Article  ADS  Google Scholar 

  34. Shapiro, S. L. & Lightman, A. P. Astrophys. J. 207, 263–278 (1976).

    Article  ADS  Google Scholar 

  35. Shapiro, S. L., Teukolsky, S. & Wasserman, I. Astrophys. J. 272, 702–707 (1983).

    Article  ADS  Google Scholar 

  36. Hartle, J. B. & Friedman, J. L. Astrophys. J. 196, 653–660 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, J., Ipser, J. & Parker, L. Models of rapidly rotating neutron stars. Nature 312, 255–257 (1984). https://doi.org/10.1038/312255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing