Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Co-localization of neurotensin-like immunoreactivity and 3H-glycine uptake system in sustained amacrine cells of turtle retina

Abstract

Amacrine cells are axonless intrinsic neurones of the vertebrate retina which have cell bodies in the proximal inner nuclear layer and processes contributing to the synaptic network of the inner plexiform layer. They receive input from bipolar, interplexiform and other amacrine cells, and synapse onto these and ganglion cells1,2. Amino acid and monoamine transmitters are found in most retinal neurones3, but peptide transmitters are exclusively located in amacrine cells4. Only one neuropeptide, amino acid or monoamine transmitter exists in any single amacrine cell population4,5. Coexistence of neuropeptides with classical transmitters has been demonstrated histologically in many neurones of the central nervous system6, but the physiological relevance of these findings is unknown7. We report here evidence of such coexistence in retinal amacrine cells of the turtle, Pseudemys scripta elegans. Using combined immunocytochemistry and autoradiography, we have localized both neurotensin-like immunoreactivity and a high affinity uptake system for 3H-glycine to the same amacrine cell, implying that this cell type may use both substances as neurotransmitters. We also present electrophysiological evidence that this type of amacrine cell responds to photic stimulation with a sustained and graded membrane depolarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dowling, J. E. & Werblin, F. J. Neurophysiol. 32, 315–338 (1969).

    Article  CAS  Google Scholar 

  2. Dowling, J. E. & Ehinger, B. Science 188, 270–273 (1975).

    Article  CAS  ADS  Google Scholar 

  3. Brecha, N. in Chemical Neuroanatomy (ed. Emson, P. C.) 85–129 (Raven, New York, 1983).

    Google Scholar 

  4. Karten, H. J. & Brecha, N. Nature 283, 87–88 (1980).

    Article  CAS  ADS  Google Scholar 

  5. Stell, W. K., Marshak, D., Yamada, T., Brecha, N. & Karten, H. J. Trends Neurosci. 3, 292–295 (1980).

    CAS  Google Scholar 

  6. Gilbert, R. F. T. & Emson, P. C. Handbk Psychopharmac. 16, 519–556 (1983).

    Article  CAS  Google Scholar 

  7. Hökfelt, T. et al. in Neural Peptides and Neuronal Communication (eds Costa, E. & Trabucci, M.) 1–23 (Raven, New York, 1980).

    Google Scholar 

  8. Sternberger, L. A. Immunochemistry (Wiley, New York, 1974).

    Google Scholar 

  9. Marchiafava, P. L. & Weiler, R. Proc. R. Soc. B214, 403–415 (1982).

    CAS  ADS  Google Scholar 

  10. Kolb, H. Phil. Trans. R. Soc. B298, 355–393 (1982).

    Article  CAS  Google Scholar 

  11. Eldred, W. D. & Karten, H. J. J. comp. Neurol. 221, 371–381 (1983).

    Article  CAS  Google Scholar 

  12. Dick, E. & Miller, R. F. Neurosci. Lett. 26, 131–135 (1981).

    Article  CAS  Google Scholar 

  13. Miller, R. F., Frumkes, T. E., Slaughter, M. & Dacheux, R. F. J. Neurophysiol. 45, 743–763 (1981).

    Article  CAS  Google Scholar 

  14. Weiler, R. & Marchiafava, P. L. Vision Res. 21, 1635–1638 (1981).

    Article  CAS  Google Scholar 

  15. Famiglietti, E. V., Kaneko, A. & Tachibana, M. Science 198, 1267–1269 (1977).

    Article  ADS  Google Scholar 

  16. Nelson, R., Famiglietti, E. V. & Kolb, H. J. Neurophysiol. 41, 472–483 (1978).

    Article  CAS  Google Scholar 

  17. Olschowka, J. A. & Jacobowitz, D. M. Peptides 4, 231–238 (1983).

    Article  CAS  Google Scholar 

  18. Eldred, W. D., Zucker, C., Karten, H. J. & Yazulla, S. J. Histochem. Cytochem. 31, 285–292 (1983).

    Article  CAS  Google Scholar 

  19. Stell, W. K. & Lightfoot, D. O. J. comp. Neurol. 159, 473–502 (1975).

    Article  CAS  Google Scholar 

  20. Weiler, R. Cell Tissue Res. 195, 515–526 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiler, R., Ball, A. Co-localization of neurotensin-like immunoreactivity and 3H-glycine uptake system in sustained amacrine cells of turtle retina. Nature 311, 759–761 (1984). https://doi.org/10.1038/311759a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311759a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing