Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photoreceptor-specific degeneration caused by tunicamycin

Abstract

The antibiotic tunicamycin inhibits the biosynthesis of N-acetyl-glucosaminylpyrophosphoryl polyisoprenol1–3, a key intermediate in the formation of the asparagine-linked oligosaccharides of glycoproteins4. The effects of tunicamycin have been studied in various biological systems5, primarily with the aim of elucidating the role of the carbohydrate moieties in the cellular function of glycoproteins6. Rhodopsin, the visual pigment of retinal rod photoreceptor cells, is a membrane glycoprotein which consists of a single polypeptide chain (opsin) to which a chromophoric prosthetic group (II-cis-retinaldehyde) and two asparagine-linked oligosaccharide chains are covalently attached7. The glycosylation of opsin can be blocked with tunicamycin in vitro in conditions where polypeptide synthesis is only slightly decreased8,9. We have reported9 that tunicamycin can disrupt the normal assembly of rod outer segment membranes in vitro without significantly inhibiting the biosynthesis or intracellular transport of opsin. Here we report that intraocular injection of tunicamycin produces a photoreceptor-specific degeneration characterized by (1) progressive shortening of rod outer segment, (2) decreased electroretinogram amplitudes, (3) cessation of rod outer segment membrane assembly, and (4) eventual photoreceptor cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takatsuki, A., Kohno, K. & Tamura, G. Agric. biol. Chem. 39, 2089–2091 (1975).

    CAS  Google Scholar 

  2. Tkacz, J. S. & Lampen, J. O. Biochem. biophys. Res. Commun. 65, 248–257 (1975).

    Article  CAS  Google Scholar 

  3. Lehle, L. & Tanner, W. FEBS Lett. 71, 167–170 (1976).

    Article  CAS  Google Scholar 

  4. Struck, D. K. & Lennarz, W. J. in The Biosynthesis of Glycoproteins and Proteoglycans (ed. Lennaz, W. J.) 35–83 (Plenum, New York, 1980).

    Book  Google Scholar 

  5. Tamura, G. (ed.) Tunicamycin (Japan Scientific Societies, Tokyo, 1982).

  6. Olden, K., Parent, J. B. & White, S. Biochim. biophys. Acta 650, 209–232 (1982).

    Article  CAS  Google Scholar 

  7. Hargrave, P. A. in Progress in Retinal Research Vol. 1 (eds Osborne, N. & Chader, G.) 1–51 (Pergamon, New York, 1982).

    Google Scholar 

  8. Plantner, J. J., Poncz, L. & Kean, E. L. Archs Biochem. Biophys. 201, 527–532 (1980).

    Article  CAS  Google Scholar 

  9. Fliesler, S. J., Rayborn, M. E. & Hollyfield, J. G. J. Cell Biol. 97, 413a (1983).

  10. Rapp, L. M. & Basinger, S. F. Vision Res. 22, 1097–1103 (1982).

    Article  CAS  Google Scholar 

  11. Hollyfield, J. G., Rayborn, M. E., Sarthy, P. V. & Lam, D. M. K. J. comp. Neurol. 188, 587–598 (1979).

    Article  CAS  Google Scholar 

  12. Young, R. W. Invest. Ophthalmol. vis. Sci. 15, 700–725 (1976).

    CAS  PubMed  Google Scholar 

  13. Graymore, C. N. in Biochemistry of the Eye (ed. Graymore, C. N.) 645–735 (Academic, New York, 1970).

    Google Scholar 

  14. Yamada, K. M. & Olden, K. in Tunicamycin (ed. Tamura, G.) 119–144 (Japan Scientific Societies, Tokyo, 1982).

    Google Scholar 

  15. Fliesler, S. J., Tabor, G. A. & Hollyfield, J. G. Expl Eye Res. (in the press).

  16. Kolb, H. & Gouras, P. Invest. Ophthalmol. vis. Sci. 13, 487–498 (1974).

    CAS  Google Scholar 

  17. Szamier, R. B. & Berson, E. L. Invest. Ophthalmol. vis. Sci. 16, 947–962 (1977).

    CAS  PubMed  Google Scholar 

  18. Szamier, R. B., Berson, E. L., Klein, R. S. & Meyers, S. Invest. Ophthalmol. vis. Sci. 18, 145–160 (1979).

    CAS  PubMed  Google Scholar 

  19. Rayborn, M. E., Moorhead, L. C. & Hollyfield, J. G. Opthalmology 89, 1441–1454 (1982).

    Article  CAS  Google Scholar 

  20. Bunt-Milam, A. H., Kalina, R. E. & Pagon, R. A. Invest. Ophthalmol. vis. Sci. 24, 458–469 (1983).

    CAS  PubMed  Google Scholar 

  21. Hollyfield, J. G., Frederick, J. M., Tabor, G. A. & Ulshafer, R. J. Ophthalmology 91, 191–196 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliesler, S., Rapp, L. & Hollyfield, J. Photoreceptor-specific degeneration caused by tunicamycin. Nature 311, 575–577 (1984). https://doi.org/10.1038/311575a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311575a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing