Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Segmentation in the vertebrate nervous system

Abstract

Although there is good evidence that growing axons can be guided by specific cues during the development of the vertebrate peripheral nervous system1, little is known about the cellular mechanisms involved. We describe here an example where axons make a clear choice between two neighbouring groups of cells. Zinc iodideosmium tetroxide staining of chick embryos reveals that motor and sensory axons grow from the neural tube region through the anterior (rostral) half of each successive somite. 180° antero-posterior rotation of a portion of the neural tube relative to the somites does not alter this relationship, showing that neural segmentation is not intrinsic to the neural tube. Furthermore, if the somitic mesoderm is rotated 180° about an antero-posterior axis, before somite segmentation, axons grow through the posterior (original anterior) half of each somite. Some difference therefore exists between anterior and posterior cells of the somite, undisturbed by rotation, which determines the position of axon outgrowth. It is widespread among the various vertebrate classes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landmesser, L. & Lance-Jones, C. in Development in the Nervous System (eds Garrod, D. R. & Feldman, J. D.) 215–231 (Cambridge University Press, 1981).

    Google Scholar 

  2. Hamburger, V. & Hamilton, H. L. J. Morphol. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  3. Tello, J. F. Trav. Lab. Invest. biol. Univ. Madr. 21, 1–93 (1923).

    Google Scholar 

  4. Detwiler, S. R. J. exp. Zool. 67, 395–441 (1934).

    Article  Google Scholar 

  5. Lewis, J., Chevallier, A., Kieny, M. & Wolpert, L. J. Embryol. exp. Morph. 64, 211–232 (1981).

    CAS  Google Scholar 

  6. Hughes, A. J. Embryol. exp. Morph. 7, 128–145 (1959).

    CAS  PubMed  Google Scholar 

  7. Remak, R. Untersuchungen über die Entwicklung der Wirbelthiere (Reimer, Berlin, 1855).

    Google Scholar 

  8. Williams, E. E. Q. Rev. Biol. 34, 1–32 (1959).

    Article  CAS  Google Scholar 

  9. Verbout, A. J. Acta biotheor. 25, 219–258 (1976).

    Article  CAS  Google Scholar 

  10. Gardiner, B. G. J. Linn. Soc. Zool. 79, 1–59 (1983).

    Article  Google Scholar 

  11. Ebner, V. Von. Sber. Akad. Wiss. Wien 97, 194–206 (1888); 101, 235–260 (1892).

  12. Goodrich, E. S. Studies on the structure and Development of Vertebrates (Macmillan, London, 1930).

    Book  Google Scholar 

  13. Marcus, H. & Blume, W. Z. Anat. EntwGesch. 80, 1–78 (1926).

    Article  Google Scholar 

  14. Mookerjee, H. K. Phil. Trans. R. Soc. 219, 165–196 (1931).

    Article  Google Scholar 

  15. Männer, H. Z. wiss. Zool. 66, 43–68 (1899).

    Google Scholar 

  16. Piiper, J. Phil. Trans. R. Soc. 216, 285–351 (1928).

    Article  Google Scholar 

  17. Dawes, B. Phil. Trans. R. Soc. 218, 115–170 (1930).

    Article  Google Scholar 

  18. Harrison, R. G. Arch. Mikrosk. Anat. EntwMech. 57, 354–449 (1901).

    Article  Google Scholar 

  19. Neal, H. V. J. Morph. 25, 1–187 (1914).

    Article  Google Scholar 

  20. Kullberg, R. W., Lentz, T. L. & Cohen, M. W. Devl Biol. 60, 101–129 (1977).

    Article  CAS  Google Scholar 

  21. Moody, S. A. & Jacobson, M. J. Neurosci. 3, 1670–1682 (1983).

    Article  CAS  Google Scholar 

  22. Gadow, H. & Abbot, E. C. Phil. Trans. R. Soc. 186, 163–221 (1895).

    Google Scholar 

  23. Akert, K. & Sandri, C. Brain Res. 7, 286–295 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keynes, R., Stern, C. Segmentation in the vertebrate nervous system. Nature 310, 786–789 (1984). https://doi.org/10.1038/310786a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310786a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing