Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Brain grafts can restore irradiation-damaged neuronal connections in newborn rats

Abstract

Immature rat brain tissue grafted to the brain of other immature and adult rats can survive and establish nerve connections with the host brains1–5. In addition to facilitating the study of factors involved in the formation of central neural connections, brain grafts may also be used to substitute damaged or maldeveloped neurones5–10. With exceptions in the visual system5, the restoration of specific central neural connections has to date involved grafts of cholinergic and monoaminergic neurones, which have good regenerative capacity10. In the present study, rat hippocampal neurones were damaged by neonatal X-ray irradiation and replaced by transplantation of normal, developing neurones of the same type. The grafted neurones (dentate granule cells) are not cholinergic or monoaminergic, but when appropriately located in the host hippocampal region they established specific and highly ordered afferent and efferent connections with the damaged host brain. Moreover, simultaneous demonstration of afferent and efferent transplant pathways showed that serial host–transplant–host connections had formed, restoring the normal neuronal circuitry initially disrupted by the irradiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lund, R. D. & Hauschka, S. D. Science 193, 582–584 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Björklund, A. & Stenevi, U. Cell Tissue Res. 186, 289–302 (1977).

    Google Scholar 

  3. Oblinger, M. M., Kallas, B. H. & Das, G. D. Brain Res. 189, 228–232 (1980).

    Article  CAS  Google Scholar 

  4. Sunde, N., & Zimmer, J. Devl Brain Res. 8, 165–191 (1983).

    Article  Google Scholar 

  5. Lund, R. D. & McLoon, S. C. in Neural Tissue Transplantation Research (eds Walles, R. B. & Das, G. D.) 165–174 (Springer, New York, 1981).

    Google Scholar 

  6. Björklund, A. & Stvenevi, U. Brain Res. 177, 555–560 (1979).

    Article  Google Scholar 

  7. Gash, D., Sladek, J. R. Jr & Sladek, C. D. Science 210, 1367–1369 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Krieger, D. T. et al. Nature 298, 468–471 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Low, W. C. et al. Nature 300, 260–262 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Björklund, A. et al. Acta physiol. scand. Suppl 522, 1–75 (1983).

    Google Scholar 

  11. Hjorth-Simonsen, A. & Jeune, B. J. comp. Neurol. 144, 215–232 (1972).

    Article  CAS  Google Scholar 

  12. Hjorth-Simonsen, A. J. comp. Neurol. 146, 219–232 (1972).

    Article  CAS  Google Scholar 

  13. Steward, O. J. comp. Neurol. 167, 285–314 (1976).

    Article  CAS  Google Scholar 

  14. Zimmer, J. J. comp. Neurol. 142, 393–416 (1971).

    Article  CAS  Google Scholar 

  15. Laurberg, S. J. comp. Neurol. 184, 685–708 (1979).

    Article  CAS  Google Scholar 

  16. Blackstad, T. W., Brink, K., Hem, J. & Jeune, B. J. comp. Neurol. 138, 433–450 (1970).

    Article  CAS  Google Scholar 

  17. Gaarskjaer, F. B. J. comp. Neurol. 203, 717–735 (1981).

    Article  CAS  Google Scholar 

  18. Haug, F.-M. S., Blackstad, T. W., Simonsen, A.H. & Zimmer, J. J. comp. Neurol. 142, 23–32 (1971).

    Article  CAS  Google Scholar 

  19. Zimmer, J. Prog. Brain Res. 48, 171–189 (1978).

    Article  CAS  Google Scholar 

  20. Bayer, S. A. J. comp. Neurol. 190, 87–114 (1980).

    Article  CAS  Google Scholar 

  21. Bayer, S. A. & Altman, J. J. comp. Neurol. 163, 1–20 (1975).

    Article  Google Scholar 

  22. Laurberg, S. & Hjorth-Simonsen, A. Nature 269, 158–160 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Geneser-Jensen, F. A. & Blackstad, T. W. Z. Zellforsch. 115, 460–481 (1971).

    Article  Google Scholar 

  24. Cowan, W. M., Stanfield, B. B. & Amaral, D. G. in Studies in Developmental Neurobiology (ed. Cowan, W. M.) 395–435 (Oxford University Press, 1981).

    Google Scholar 

  25. Stirling, R. V. & Bliss, T. V. P. Prog. Brain Res. 48, 191–198 (1978).

    Article  CAS  Google Scholar 

  26. Gottlieb, D. I. & Cowan, W. M. Brain Res. 41, 452–456 (1972).

    Article  CAS  Google Scholar 

  27. Sunde, N. & J. Neurosci. Lett. Suppl. 7, S33 (1981).

    Google Scholar 

  28. Raisman, G. & Ebner, F. F. Neuroscience 9, 783–801 (1983).

    Article  CAS  Google Scholar 

  29. Bayer, S., Brunner, R. L., Heni, R. & Altman, J. Nature 242, 222–224 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunde, N., Laurberg, S. & Zimmer, J. Brain grafts can restore irradiation-damaged neuronal connections in newborn rats. Nature 310, 51–53 (1984). https://doi.org/10.1038/310051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing