Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf

Abstract

Eukaryotic cells contain genes termed proto-oncogenes (c-onc) which have the potential to transform cells in culture and induce tumours in vivo. Most of these genes have been identified by their occasional incorporation into retroviral genomes which can act as natural transducing vectors for these and perhaps other cellular genes1,2. Cell-derived oncogenes of retroviruses (v-onc) are associated mostly with the induction of mesenchymal tumours whereas carcinoma induction is rare3. One of these rare carcinoma-inducing viruses is the acutely transforming avian retrovirus MH2 (refs 3–5). Recently we6,7 and others8 have shown that this virus carries a novel putative oncogene, v-mil, in addition to the known oncogene v-myc. While the transforming ability of v-mil has not been directly established, we have recently discovered by hybridization analysis that v-mil is homologous to v-raf (ref. 9), the transforming gene of the murine retrovirus 3611 MSV (ref. 10). Both viruses express the mil/raf oncogene product as a gag-fusion polyprotein6,11, while the myc oncogene of MH2 is expressed via a subgenomic mRNA12. Here we report the complete nucleotide sequence of v-mil and compare it with that of v-raf34. The 80% homology between the nucleotide sequences and the 94% homology between the predicted amino acid sequences of the two viral genes clearly indicate that these are the avian and murine forms of the same gene. Comparison of the two sequences with that of the human cellular homologue13 (T. I. Bonner et al., manuscript in preparation) indicates that v-raf has more 3′ untranslated sequences while v-mil has additional sequences from two 5′ exons of the cellular homologue. Although the mil/raf amino acid sequences reveal partial homology to that of the v-src product, no tyrosine-specific protein kinase activity is detected for the gagmil and the gagraf hybrid proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bishop, J. M. A. Rev. Biochem. 52, 301–354 (1983).

    Article  CAS  Google Scholar 

  2. Bister, K. & Duesberg, P. H. in Advances in Viral Oncology Vol. 1 (ed. Klein, G.) 3–42 (Raven, New York, 1982).

    Google Scholar 

  3. Beard, J. W. in Viral Oncology (ed. Klein, G.) 55–87 (Raven, New York, 1980).

    Google Scholar 

  4. Carr, J. G. Br. J. Cancer. 14, 77–82 (1980).

    Article  Google Scholar 

  5. Alexander, R. W., Moscovici, C. & Vogt, P. K. J. natn. Cancer Inst. 62, 359–366 (1979).

    CAS  Google Scholar 

  6. Jansen, H. W., Patschinsky, T. & Bister, K. J. Virol. 48, 61–73 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jansen, H. W., Rückert, B., Lurz, R. & Bister, K. EMBO J. 2, 1969–1975 (1983).

    Article  CAS  Google Scholar 

  8. Kan, N. C. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6566–6570 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Jansen, H. W. et al. Nature 307, 281–284 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Rapp, U. R. et al. Proc. natn. Acad. Sci. U.S.A. 80, 4218–4222 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Rapp, U. R., Reynolds, F. H. & Stephenson, J. R. J. Virol. 45, 914–924 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pachl, C., Biegalke, B. & Linial, M. J. Virol. 45, 133–139 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonner, T. I. et al. Science 223, 71–74 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Schwartz, D. E., Tizard, R. & Gilbert, W. Cell 32, 853–869 (1983).

    Article  CAS  Google Scholar 

  15. Bister, K. et al. UCLA Symp. molec. cell. Biol. 17 (in the press).

  16. Bister, K., Lee, W.-H. & Duesberg, P. H. J. Virol. 36, 617–621 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Feldman, R. A., Hanafusa, T. & Hanafusa, H. Cell 22, 757–765 (1980).

    Article  CAS  Google Scholar 

  18. Mathey-Prevot, B., Hanafusa, H. & Kawai, S. Cell 28, 897–906 (1982).

    Article  CAS  Google Scholar 

  19. Ramsay, G., Hayman, M. J. & Bister, K. EMBO J. 1, 1111–1116 (1982).

    Article  CAS  Google Scholar 

  20. Yamamoto, Y. et al. Cell 35, 71–78 (1983).

    Article  CAS  Google Scholar 

  21. Hampe, A., Gobet, M., Sherr, C. J. & Galibert, F. Proc. natn. Acad. Sci. U.S.A. 81, 85–89 (1984).

    Article  ADS  CAS  Google Scholar 

  22. van Beveren, C. et al. Nature 289, 258–262 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Hayman, M. J. et al. Cell 32, 579–588 (1983).

    Article  CAS  Google Scholar 

  24. Downward, J. et al. Nature 307, 521–527 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Bunte, T., Greiser-Wilke, I. & Moelling, K. EMBO J. 2, 1087–1092 (1983).

    Article  CAS  Google Scholar 

  26. Papkoff, J., Nigg, E. A. & Hunter, T. Cell 33, 161–172 (1983).

    Article  CAS  Google Scholar 

  27. Naharro, G., Robbins, K. C. & Reddy, E. P. Science 223, 63–66 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Kitamura, N., Kitamura, A., Toyoshima, K., Hirayama, Y. & Yoshida, M. Nature 297, 205–208 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Shibuya, M. & Hanafusa, H. Cell 30, 787–795 (1982).

    Article  CAS  Google Scholar 

  30. Hampe, A., Laprevotte, I., Galibert, F., Fedele, L. A. & Sherr, C. J. Cell 30, 775–785 (1982).

    Article  CAS  Google Scholar 

  31. Reddy, E. P., Smith, M. J. & Srinivasan, A. Proc. natn. Acad. Sci. U.S.A. 80, 3623–3627 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Wierenga, R. K. & Hol. W. G. J. Nature 302, 842–844 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Bryant, D. & Parsons, T. J. Virol. 45, 1211–1216 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mark, G. E. & Rapp, U. R. Science (submitted).

  35. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  36. Frykberg, L. et al. Cell 32, 227–238 (1983).

    Article  CAS  Google Scholar 

  37. Nunn, M. F., Seeburg, P. H., Moscovici, C. & Duesberg, P. H. Nature 306, 391–395 (1983).

    Article  ADS  CAS  Google Scholar 

  38. Leprince, D. et al. Nature 306, 395–397 (1983).

    Article  ADS  CAS  Google Scholar 

  39. Kan, N. C. et al. Science 223, 813–816 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutrave, P., Bonner, T., Rapp, U. et al. Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature 309, 85–88 (1984). https://doi.org/10.1038/309085a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309085a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing