Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nutrient depletion indicates high primary productivity in the Weddell Sea

Abstract

The Southern Ocean, and in particular the Weddell Sea, have long been considered areas of high biological productivity1, but recent isotopic measurements of primary productivity have not confirmed this view2,3. Because the large Zooplankton and marine mammal populations of the Southern Ocean depend ultimately on phytoplankton as the base of the food web, accurate knowledge of primary productivity is essential to our understanding of the Antarctic ecosystem. Oceanographie data collected aboard the Soviet icebreaker Mikhail Somov have allowed us to derive a new productivity estimate, based on the seasonal depletion of nitrate, phosphate and silicic acid in the surface layer. From these depletions and data on the elemental composition of Southern Ocean phytoplankton, we estimate average primary productivity in the Weddell Sea in the springtime to be 220–420 mg C m−2 day−1. Our most conservative estimate is 1.5–4 times higher than recently reported measurements of productivity in the open ocean areas of the Southern Ocean2–5. Our estimates are inherently averages over time and space, including the effects of brief, intense spring blooms of phytoplankton which may occur near the receding ice edge6–8. Studies of primary productivity based on isotope uptake experiments, particularly in the austral summer, may fail to account for the significance of such blooms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hart, T. J. Discovery Rep. 8, 3–268 (1934).

    Google Scholar 

  2. Holm-Hansen, O., El-Sayed, S. Z., Franceschini, G. A. & Cuchel, R. L. in Proc. 3rd SCAR Symp. Antarctic Biology, 11–50 (Smithsonian Institution, Washington DC, 1977).

    Google Scholar 

  3. El-Sayed, S. Z. & Turner, J. T. in Polar Oceans (ed. Dunbar, M. J.) 463–503 (Arctic Institute of North America, Calgary, Alberta, 1977).

    Google Scholar 

  4. Gilbert, P. M., Biggs, D. C. & McCarthy, J. J. Deep-Sea Res. 29, 837–850 (1982).

    Article  ADS  Google Scholar 

  5. Slawyk, G. Aust. J. mar. Freshwat. Res. 30, 431–448 (1977).

    Article  Google Scholar 

  6. El-Sayed, S. Z. in Biology of the Antarctic Seas Vol. 4 (eds Land, G. & Wallen, I.) 301–312 (American Geophysical Union, Washington DC, 1971).

    Google Scholar 

  7. Olson, R. J. Limnol. Oceanogr. 25, 1064–1074 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Smith, W. O. & Nelson, D. M. in Proc. 4th Symp. Antarctic Biology (Elsevier, New York, in the press).

  9. Gordon, A. L. & Huber, B. A. J. geophys. Res. 89 (C1), 641–648 (1984).

    Article  ADS  Google Scholar 

  10. Gordon, A. L., Chen, C. T. A. & Metcalf, W. G. J. geophys. Res. 89 (C1), 637–640 (1984).

    Article  ADS  Google Scholar 

  11. Clarke, D. B. & Askley, S. F. J. geophys. Res. (in the press).

  12. Jennings, J. C. Jr, Nelson, D. M. & Gordon, L. I. Antarct. J. U.S. 8, 101 (1982).

    Google Scholar 

  13. Carmack, E. C. & Foster, T. D. Deep-Sea Res. 22, 711–724 (1975).

    Google Scholar 

  14. Bainbridge, A. E., Geosecs Atlantic Expedition Vol. 1 (National Science Foundation, Washington DC, 1981).

    Google Scholar 

  15. Huber, B. A., Rennie, S. E., Georgi, D. T., Jacobs, S. S. & Gordon, A. L. Islas Orcadas Reports, Cruise 12, Jan–Feb 1977, Tech. Rep. CU-2-81-TR2 (Larnont-Doherty Geological Observatory, Columbia University, Palisades, 1981).

    Google Scholar 

  16. Mosby, H. Scientific Results of the Norwegian Antarctic Expeditions, 1927–1928, Vol. 1(11) (Det Norske Videnskaps-Academi I, Oslo, 1934).

    Google Scholar 

  17. Gordon, A. L., Martinson, D. G. & Taylor, H. W. Deep-Sea Res. 28 A, 151–163 (1981).

    Article  ADS  Google Scholar 

  18. Gordon, A. L. J. geophys. Res. 86, 493–4197 (1981).

    Google Scholar 

  19. Ackley, S. F. Int. Ass. hydrol. Sci. 131, 129–159 (1981).

    Google Scholar 

  20. Marra, J. & Boardman, D. C. Mar. Ecol.-Prog. Ser. (submitted).

  21. Nelson, D. M. & Gordon, L. I. Geochim. cosmochim. Acta 46, 491–501 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea, Ideas and Observations Vol. 2, 26–77 (Interscience, New York, 1963).

    Google Scholar 

  23. Copin-Montegut, C. & Copin-Montegut, G. Deep-Sea Res. 25, 911–931 (1978).

    Article  ADS  CAS  Google Scholar 

  24. El-Sayed, S. Z. & Taguchi, S. Deep-Sea Res. 28 A, 1017–1032 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, J., Gordon, L. & Nelson, D. Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309, 51–54 (1984). https://doi.org/10.1038/309051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing