Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens

Abstract

Abundant evidence now indicates that atypical visual exposure early in the life of cats and primates can cause profound alterations in cortical organization1. In particular, it has been shown that preventing the use of one eye for vision early in life results in a marked shift of ocular preference among neurones of kitten visual cortex in favour of the exposed eye1–3. The cellular mechanisms underlying these alterations remain uncertain, but much recent attention has focused on the possible role of pharmacological agents in modifying cortical plasticity, with particular reference to catecholamines. These experiments, which have shown that agents which modify cortical nonadrenaline levels can alter the degree of cortical plasticity4–7, do not specify the mechanism of action, and leave open the possibility that other neurotransmitter systems may also be involved in cortical modifiability. We now report that chronic intracortical administration of L-glutamate during a period of monocular vision imposed on young kittens largely prevents the ocular dominance shift which normally occurs under these circumstances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Movshon, J. A. & Van Sluyters, R. C. A. Rev. Psychol. 32, 477–522 (1981).

    Article  CAS  Google Scholar 

  2. Hubel, D. H., Wiesel, T. N. & Levay, S. Phil. Trans. R. Soc. B278, 131–163 (1977).

    Article  Google Scholar 

  3. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  4. Kasamatsu, T. & Pettigrew, J. D. J. comp. Neurol. 185, 139–161 (1979).

    Article  CAS  Google Scholar 

  5. Kasamatsu, T., Pettigrew, J. D. & Ary, M. J. comp. Neurol. 185, 163–181 (1979).

    Article  CAS  Google Scholar 

  6. Daw, N., Rader, R. K. & Robertson, T. W. Soc. Neurosci. Abstr. 7, 673 (1981).

    Google Scholar 

  7. Daniels, J. D., Ellis, M. K., Bianco, S. A., Garrett, M., Nelson, S. B. & Schwartz, M. Soc. Neurosci. Abstr. 7, 673 (1981).

    Google Scholar 

  8. Shaw, C. & Cynader, M. Soc. Neurosci. Abstr. 7, 722 (1981).

    Google Scholar 

  9. Hess, R. & Murata, K. Expl. Brain Res. 21, 285–297 (1974).

    Article  CAS  Google Scholar 

  10. Cynader, M., Berman, N. & Hein, A. Expl Brain Res. 25, 139–156 (1976).

    Article  CAS  Google Scholar 

  11. Hess, R., Negishi, K. & Creutzfeldt, O. Expl Brain Res. 22, 415–419 (1975).

    Article  Google Scholar 

  12. Van Harreveld, A. & Fifkova, E. Expl molec. Path. 15, 61–81 (1971).

    Article  CAS  Google Scholar 

  13. Wong-Riley, M. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

  14. Thieffry, M., Bruner, J. & Personne, P. J. Physiol., Paris 75, 635–639 (1979).

    CAS  Google Scholar 

  15. Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. Fedn Proc. 38, 2109–2116.

  16. Reader, T. A. Experientia 34, 1586–1587 (1978).

    Article  CAS  Google Scholar 

  17. Reader, T. A., Ferron, A., Descarries, L. & Jasper, H. H. Brain Res. 160, 217–229 (1979).

    Article  CAS  Google Scholar 

  18. Kasamatsu, T. & Heggelund, P. Expl Brain Res. 45, 317–327 (1982).

    Article  CAS  Google Scholar 

  19. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, C., Cynader, M. Disruption of cortical activity prevents ocular dominance changes in monocularly deprived kittens. Nature 308, 731–734 (1984). https://doi.org/10.1038/308731a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308731a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing