Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

κ and δ-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release

Abstract

At least three different families of endogenous opioid peptides, the enkephalins, endorphins and dynorphins, are present in the mammalian central nervous system (CNS). Immuno-cytochemical studies have demonstrated their localization in neurones1–8, which supports the view that these peptides may have a role as neurotransmitters or neuromodulators. However, the target cells and cellular processes acted upon by the opioid peptides are still largely unknown. One possible function of neuropeptides, including the opioid peptides, may be presynaptic modulation of neurotransmission in certain neuronal pathways, for example, by inhibition or promotion of neurotransmitter release from the nerve terminals9–12. Here we report that dynorphin and some benzomorphans potently and selectively inhibit the release of (radiolabelled) dopamine from slices of rat corpus striatum, by activating κ-opioid receptors. In contrast, [Leu5]enkephalin and [D-Ala2, D-Leu5]enkephalin selectively inhibit acetylcholine release by activating δ-opioid receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bloom, F. E. et al. Adv. biochem. Psychopharmac. 18, 89–109 (1978).

    CAS  Google Scholar 

  2. Snyder, S. H. & Childers, S. R. A. Rev. Neurosci. 2, 35–64 (1979).

    Article  CAS  Google Scholar 

  3. Watson, S. J. et al. Science 216 85–87 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Vincent, S. R., Hökfelt, T., Christensson, I. & Terenius, L. Neurosci. Lett. 33, 185–190 (1982).

    Article  CAS  Google Scholar 

  5. Khachaturian, H. et al. Peptides 3, 941–954 (1982).

    Article  CAS  Google Scholar 

  6. Watson, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 80 891–894 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Weber, E. & Barchas, J. D. Proc. natn. Acad. Sci. U.S.A. 80, 1125–1129 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Cuello, A. C. Br. med. Bull. 39, 11–16 (1983).

    Article  CAS  Google Scholar 

  9. Iwamoto, E. T. & Way, E. L. Adv. biochem. Psychopharmac. 20, 357–407 (1979).

    CAS  Google Scholar 

  10. Vaughan, P. F. T. Cell. molec. Biol. 28, 369–382 (1982).

    CAS  Google Scholar 

  11. Langer, S. Z. Pharmac. Rev. 32, 337–362 (1980).

    CAS  Google Scholar 

  12. Starke, K. A. Rev. Pharmac. Toxicol. 21, 7–30 (1981).

    Article  CAS  Google Scholar 

  13. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E. & Gilbert, P. E. J. Pharmac. exp. Ther. 197, 517–532 (1976).

    CAS  Google Scholar 

  14. Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Wüster, M., Schultz, R. & Herz, A. Biochem. Pharmac. 30, 1883–1887 (1981).

    Article  Google Scholar 

  16. Wood, P. L. Neuropharmacology 21, 487–497 (1982).

    Article  CAS  Google Scholar 

  17. Paterson, S. J., Robson, L. E. & Kosterlitz, H. W., Br. med. Bull. 39, 31–36 (1983).

    Article  CAS  Google Scholar 

  18. Chavkin, C., James, I. F. & Goldstein, A. Science 215, 413–415 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Yoshimura, K., Huidobro-Toro, J. P. & Way, E. L. Eur. J. Pharmac. 84, 17–24 (1982).

    Article  CAS  Google Scholar 

  20. Dray, A. Neuroscience 4, 1407–1439 (1979).

    Article  CAS  Google Scholar 

  21. Hattori, T., Singh, U. K. & McGeer, P. L. Brain Res. 102, 164–173 (1976).

    Article  CAS  Google Scholar 

  22. Bartholini, G., Stadler, H., Gadea Civia, M. & Lloyd, K. G. Neuropharmacology 15, 515–519 (1976).

    Article  CAS  Google Scholar 

  23. Garattini, S., Pujol, J.F. & Samanin, R.S. (eds) Interactions Between Putative Neurotransmitters in the Brain 3–38 (Raven, New York, 1978).

  24. Stoof, J. C., Horn, A. S. & Mulder, A. H. Brain Res. 196, 276–281 (1980).

    Article  CAS  Google Scholar 

  25. Hertting, G., Zumstein, A., Jackish, R., Hoffmann, I. & Starke, K. Naunyn-Schmiedebergs Archs Pharmak. 315, 111–117 (1980).

    Article  CAS  Google Scholar 

  26. Hughes, J., Kosterlitz, H. W. & Smith, T. W. Br. J. Pharmac. 61, 639–647 (1977).

    Article  CAS  Google Scholar 

  27. Yang, H. Y., Hong, J. S. & Costa, E. Neuropharmacology 16, 303–307 (1977).

    Article  CAS  Google Scholar 

  28. Simantov, R., Kuhar, M. J., Uhl, G. R. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 74, 2167–2171 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Goldstein, A. & Ghazarossian, V. E. Proc. natn. Acad. Sci. U.S.A. 77, 6207–6210 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Höllt, V., Haarmann, I., Bovermann, K., Jericz, M. & Herz, A. Neurosci. Lett. 18, 149–153 (1980).

    Article  Google Scholar 

  31. Schoffelmeer, A. N. M., Wemer, J. & Mulder, A. H. Neurochem. Int. 3, 129–136 (1981).

    Article  CAS  Google Scholar 

  32. Mulder, A. H. Prog. Brain Res. 55, 135–156 (1982).

    Article  CAS  Google Scholar 

  33. Frankhuyzen, A. L. & Mulder, A. H. Eur. J. Pharmac. 78, 91–97 (1982).

    Article  CAS  Google Scholar 

  34. Lubetzki, C., Chesselet, M. F. & Glowinski, J. J. Pharmac. exp. Ther. 222, 435–440 (1982).

    CAS  Google Scholar 

  35. Szerb, J. C. Eur. J. Pharmac. 29, 192–194 (1974).

    Article  CAS  Google Scholar 

  36. Arbilla, S. & Langer, S. Z. Nature 271, 559–561 (1978).

    Article  ADS  CAS  Google Scholar 

  37. Starr, M. J. pharm. Pharmac. 30, 359–363 (1978).

    Article  CAS  Google Scholar 

  38. Beani, L., Bianchi, C. & Siniscalchi, A. Br. J. Pharmac. 76, 393–401 (1982).

    Article  CAS  Google Scholar 

  39. Celsen, B. & Kuschinsky, K. Naunyn-Schmiedebergs Archs Pharmak. 284, 159–165 (1974).

    Article  CAS  Google Scholar 

  40. Taube, H. D., Starke, K. & Borowski, E. Naunyn-Schmiedebergs Archs Pharmak. 299, 123–141 (1977).

    Article  CAS  Google Scholar 

  41. Göthert, M., Pohl, I. M. & Wehking, E. Naunyn-Schmiedebergs Archs Pharmak. 307, 21–27 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, A., Wardeh, G., Hogenboom, F. et al. κ and δ-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature 308, 278–280 (1984). https://doi.org/10.1038/308278a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308278a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing