Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers

Abstract

Many important physiological processes, including neurotransmitter release and muscle contraction1–3, are regulated by the concentration of Ca2+ ions in the cell. Levels of cytoplasmic Ca2+ can be elevated by the entry of Ca2+ ions through voltage-dependent channels which are selective for Ca2+, Ba2+ and Sr2+ ions4–14. We have measured currents through single, voltage-dependent calcium channels from rat brain that have been incorporated into planar lipid bilayers. Channel gating was voltage-dependent: membrane depolarization increased the channel open times and decreased the closed times. The channels were selective for divalent cations over monovalent ions. The well-known calcium channel blockers, lanthanum and cadmium, produced a concentration-dependent reduction of the apparent single-channel conductance. Contrary to expectations14, the nature of the divalent cation carrying current through the channel affected not only the single-channel conductance, but also the channel open times, with mean open times being shortest for barium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tsien, R. W. A. Rev. Physiol. 45, 341–358 (1983).

    Article  CAS  Google Scholar 

  2. Reuter, H. Nature 301, 569–574 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  4. Reuter, H., Stevens, C. F., Tsien, R. W. & Yellen, G. Nature 297, 501–504 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Hagiwara, S. & Ohmori, H. J. Physiol., Lond. 336, 649–661 (1983).

    Article  CAS  Google Scholar 

  6. Lux, H. D. & Nagy, K. Pflügers Arch. ges. Physiol. 391, 252–254 (1981).

    Article  CAS  Google Scholar 

  7. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol., Lond. 331, 599–635 (1982).

    Article  CAS  Google Scholar 

  8. Brown, A. M., Camerer, H., Kunze, D. L. & Lux, H. D. Nature 299, 156–158 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Nachshen, D. A. & Blaustein, M. P. J. gen. Physiol. 79, 1065–1087 (1982).

    Article  CAS  Google Scholar 

  10. Llinas, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 289–322 (1981).

    Article  CAS  Google Scholar 

  11. Hagiwara, S., Fukuda, J. & Eaton, D. C. J. gen. Physiol. 63, 564–578 (1974).

    Article  CAS  Google Scholar 

  12. Ehrlich, B. E., Finkelstein, A., Forte, M. & Kung, C. Biophys. J. 41, 293a (1983).

    Article  Google Scholar 

  13. Venter, J. C. et al. J. biol. Chem. 258, 9344–9348 (1983).

    CAS  PubMed  Google Scholar 

  14. Hagiwara, S. & Ohmori, H. J.Physiol., Lond. 331, 231–252 (1982).

    Article  CAS  Google Scholar 

  15. Kobayashi, H. & Matzu, T. in Frontiers in Neuroendocrinology (eds Ganong, W. F. & Martini, L.) 3–46 (Oxford University Press, 1969).

    Google Scholar 

  16. Nelson, M. T., Roudna, M. & Bamberg, E. Am. J. Physiol. 245, C151–156 (1983).

    Article  CAS  Google Scholar 

  17. Krueger, B. K., Worley III, J. F. & French, R. J. Nature 303, 172–175 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Marchais, D. & Marty, A. J. Physiol., Lond. 297, 9–45 (1979).

    Article  CAS  Google Scholar 

  19. Gage, P. W. & Van Helden, D. J. Physiol., Lond. 288, 509–528 (1979).

    CAS  PubMed  Google Scholar 

  20. Swenson Jr., R. P. & Armstrong, C. M. Nature 291, 427–429 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Lee, K. S. & Tsien, R. W. Nature 302, 790–794 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Saimi, Y. & Kung, C. Science 218, 153–156 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M., French, R. & Krueger, B. Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers. Nature 308, 77–80 (1984). https://doi.org/10.1038/308077a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308077a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing