Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos

Abstract

Gastrulation and formation of the neural plate are major steps in early vertebrate embryogenesis. Although morphogenetic movements leading to the formation of the primary germ layers have been extensively described1–3, the mechanisms governing migration of mesodermal cells and their interactions with ectoderm remain ill-defined. A large body of evidence indicates that fibronectin (FN), a high molecular weight cell-surface-associated glycoprotein, promotes cell adhesion and cell migration throughout embryogenesis4–6. FN has been detected at an early blastula stage in Pleurodeles waltlii7. We now show that FN is a component of a dense fibrillar matrix underlying the blastocoel roof; in contrast, the exterior surface of the embryo is devoid of FN. Microsurgical inversion of part of the blastocoel roof does not prevent mesodermal cell migration except at the site of inversion where no FN matrix is available. Perturbation experiments using antibodies to FN demonstrate that the invagination of presumptive mesodermal cells does not occur when the monovalent antibodies are injected before or at the onset of gastrulation; on the other hand, the formation of a neural plate is not prevented when late gastrula stage embryos are treated with antibodies to FN. We conclude that the presence of FN is required for cell migration during gastrulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holftreter, J. J. exp. Zool. 94, 261–318 (1943).

    Article  Google Scholar 

  2. Holftreter, J. J. exp. Zool. 95, 171–212 (1944).

    Article  Google Scholar 

  3. Vakaet, L. Archs Biol. 81, 387–426 (1970).

    CAS  Google Scholar 

  4. Hynes, R. O. & Yamada, K. M. J. Cell Biol. 95, 369–377 (1982).

    Article  CAS  Google Scholar 

  5. Rovasio, R. A., Delouvee, A., Yamada, K. M., Timpl, R. & Thiery, J. P. J. Cell Biol. 96, 462–473 (1983).

    Article  CAS  Google Scholar 

  6. Wylie, C. C. & Heasman, J. Phil. Trans. R. Soc. B299, 177–183 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Boucaut, J. C. & Darribere, T. Cell Tissue Res. 234, 135–145 (1983).

    Article  CAS  Google Scholar 

  8. Tarin, D., J. Embryol. exp. Morph. 26, 543–570 (1971).

    CAS  PubMed  Google Scholar 

  9. Keller, R. E. & Schoenwolf, G. C. Wilhelm Roux′ Arch. dev. Biol. 182, 165–186 (1977).

    Article  Google Scholar 

  10. Nakatsuji, N. & Johnson, K. E. J. Cell Sci. 59, 61–70 (1983).

    CAS  PubMed  Google Scholar 

  11. Nakatsuji, N. & Johnson, K. E. J. Cell Sci. 59, 43–60 (1983).

    CAS  Google Scholar 

  12. Nakatsuji, N. & Johnson, K. E. Cell Motil. 2, 149–161 (1982).

    Article  CAS  Google Scholar 

  13. Critchley, D. R., England, M. A., Wakely, J. & Hynes, R. P. Nature 280, 498–500 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Sanders, E. J. J. Embryol. exp. Morph. 71, 155–170 (1982).

    CAS  PubMed  Google Scholar 

  15. Duband, J. L. & Thiery, J. P. Devl Biol. 94, 337–350 (1982).

    Article  CAS  Google Scholar 

  16. Newgreen, D. & Thiery, J. P. Cell Tissue Res. 211, 269–291 (1980).

    Article  CAS  Google Scholar 

  17. Kubota, H. Y. & Durston, A. J. J. Embryol. exp. Morph. 44, 71–80 (1980).

    Google Scholar 

  18. Duprat, A. M., Gualandris, L. & Rouge, P., J. Embryol. exp. Morph. 70, 171–187 (1982).

    CAS  PubMed  Google Scholar 

  19. Gualandris, L., Rouge, P. & Duprat, A. M., J. Embryol. exp. Morph. (in the press).

  20. Engvall, E. & Ruoslahti, E. Int. J. Cancer, 20, 1–5 (1977).

    Article  CAS  Google Scholar 

  21. Brackenbury, R., Thiery, J. P., Rutishauser, U. & Edelman, G. M. J. biol. Chem. 252, 6835–6840 (1977).

    CAS  PubMed  Google Scholar 

  22. Laemmli, U. K. Nature 227, 680–689 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Towbin, M., Staehelin, T. & Gurdon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucaut, J., Darribère, T., Boulekbache, H. et al. Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. Nature 307, 364–367 (1984). https://doi.org/10.1038/307364a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307364a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing