Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transposition of Tn554 does not generate a target duplication

Abstract

Transposable elements from prokaryotic and eukaryotic organisms are discrete DNA segments bounded by inverted or directly repeated sequences that insert into non-homologous DNA in a reaction that is independent of the general recombination functions of the host. The mechanisms proposed generally involve a staggered double-stranded scission of the target DNA, ligation to the nicked ends of the transposable element, and replication of the element, resulting in the generation of a directly repeated oligonucleotide target sequence flanking the new copy of the element1–3. Most transposons have a relatively low degree of target site specificity coupled with a low insertion frequency. Tn554, a Staphylococcus aureus transposon which specifies resistances to erythromycin and spectinomycin, displays an unusually high degree of insertion specificity. Tn554 transposes with high efficiency to a unique (‘primary’) site in the S. aureus chromosome4,5 and only rarely (<10−6 per transductant) to other, secondary sites6. We report here the nucleotide sequences surrounding the junctions of Tn554 in three independent ‘primary’ insertions and two ‘secondary’ insertions of the transposon. Two unusual features are revealed: first, the termini of Tn554 contain neither inverted nor directly repeated sequences. Second, transposition of Tn554 does not generate the short direct repeats of the target DNA that are characteristic of other transposable elements. These results suggest that the mechanism of Tn554 insertion may be significantly different from that of other transposons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shapiro, J. A. Proc. natn. Acad. Sci. U.S.A. 76, 1933–1977 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Grindley, N. & Sherratt, D. Cold Spring Harb. Symp. quant. Biol. 45, 125–134 (1980).

    Article  Google Scholar 

  3. Kleckner, N. A. Rev. Genet. 15, 341–404 (1981).

    Article  CAS  Google Scholar 

  4. Phillips, S. & Novick, R. P. Nature 278, 476–478 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Krolewski, J., Murphy, E., Novick, R. P. & Rush, M. G. J. molec. Biol. 152, 19–33 (1981).

    Article  CAS  Google Scholar 

  6. Murphy, E., Phillips, S., Edelman, I. & Novick, R. P. Plasmid 5, 292–305 (1981).

    Article  CAS  Google Scholar 

  7. Lichtenstein, C. & Brenner, S. Molec. gen. Genet. 183, 380–387 (1981).

    Article  CAS  Google Scholar 

  8. Barth, P. T., Datta, N., Hedges, R. W. & Grinter, N. J. J. Bact. 125, 800–810 (1976).

    CAS  Google Scholar 

  9. Kamp, D. & Kahmann, R. Cold Spring Harb. Symp. quant. Biol. 45, 329–336 (1980).

    Article  Google Scholar 

  10. Lichtenstein, C. & Brenner, S. Nature 297, 601–603 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Marmur, J., Falkow, S. & Mandel, M. A. Rev. Microbiol. 17, 329–372 (1963).

    Article  CAS  Google Scholar 

  12. Nash, H. A. Rev. Genet. 15, 143–167 (1981).

    Article  CAS  Google Scholar 

  13. Berg, D. Proc. natn. Acad. Sci. U.S.A. 80, 792–796 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Liebhart, J. C., Ghelardini, P. & Paolozzi, L. Proc. natn. Acad. Sci. U.S.A. 79, 4362–4366 (1983).

    Article  ADS  Google Scholar 

  15. Akroyd, J. E. & Symonds, N. Nature 303, 84–86 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Allet, B. Cell 16, 123–130 (1979).

    Article  CAS  Google Scholar 

  17. Kahmann, R. & Kamp, D. Nature 280, 247 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Chaconas, G., Harshey, R. M., Sarvetnick, N. & Bukhari, A. I. J. molec. Biol. 150, 341–359 (1981).

    Article  CAS  Google Scholar 

  19. Harshey, R. M. Proc. natn. Acad. Sci. U.S.A. 80, 2012–2016 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Grunstein, M. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Novick, R. P., Murphy, E., Gryczan, T. J., Baron, E. & Edelman, I. Plasmid 2, 109–129 (1979).

    Article  CAS  Google Scholar 

  22. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, E., Löfdahl, S. Transposition of Tn554 does not generate a target duplication. Nature 307, 292–294 (1984). https://doi.org/10.1038/307292a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307292a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing