Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance

Abstract

Slow muscarinic inhibition may be a powerful influence on membrane properties in the peripheral1–3 and central nervous system4. But the location of the muscarinic receptors in sympathetic ganglia, either on interneurones or on the postganglionic membrane, and the underlying mechanism of the inhibitory response, remains controversial5–7. In mammalian sympathetic ganglia synaptic activation of muscarinic receptors located on inhibitory interneurones was thought to release catecholamines leading to a membrane hyperpolarization called the slow inhibitory postsynaptic potential, or s.-i.p.s.p.8. However, the s.-i.p.s.p. in parasympathetic ganglia3,9,10 and in amphibian sympathetic ganglia1,2 is due to direct monosynaptic activation of muscarinic receptors, accompanied by an increased potassium conductance (but see ref. 11), and is not mediated by catecholamines. The situation is less clear in mammalian sympathetic ganglia and monosynaptic s.-i.p.s.p. observed in other ganglia could be exceptions to the hypothesis. We showed earlier that the s.-i.p.s.p. in rabbit superior cervical ganglia is not affected by catecholamine antagonists12. We now show that the s.-i.p.s.p. in a mammalian sympathetic ganglion is due to the monosynaptic activation of muscarinic receptors, probably by an increase in potassium conductance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horn, J. P. & Dodd, J. Nature 292, 625–627 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Dodd, J. & Horn, J. P. J. Physiol., Lond. 334, 271–291 (1983).

    Article  CAS  Google Scholar 

  3. Gallagher, J. P., Griffith, W. H. III & Shinnick-Gallagher, P. J. Physiol., Lond. 332, 473–486 (1982).

    Article  CAS  Google Scholar 

  4. Krnjevic, K. & Ropert, N. Neuroscience 7, 2165–2183 (1982).

    Article  CAS  Google Scholar 

  5. Gallagher, J. P., Shinnick-Gallagher, P., Cole, A. E., Griffith, W. H. & Williams, B. J. Fedn Proc. 39, 3009–3015 (1980).

    CAS  Google Scholar 

  6. Libet, B. & Kobayashi, H. J. Neurophysiol. 37, 805–814 (1974).

    Article  CAS  Google Scholar 

  7. Weight, F. F. & Padjen, A. Brain Res. 55, 225–228 (1973).

    Article  CAS  Google Scholar 

  8. Eccles, R. & Libet, B. J. Physiol., Lond. 157, 484–503 (1961).

    Article  CAS  Google Scholar 

  9. Hartzell, H. C., Kuffler, S. W., Stickgold, R. & Yoshikami, D. J. Physiol., Lond. 271, 817–846 (1977).

    Article  CAS  Google Scholar 

  10. Griffith, W. H., Gallagher, J. P. & Shinnick-Gallagher, P. Brain Res. 209, 446–451 (1981).

    Article  Google Scholar 

  11. Akasu, T. & Koketsu, K. Jap. J. Physiol. 33, 279–300 (1983).

    Article  CAS  Google Scholar 

  12. Cole, A. E. & Shinnick-Gallagher, P. Brain Res. 187, 226–230 (1980).

    Article  CAS  Google Scholar 

  13. Ginsborg, B. L., House, C. R. & Silinsky, E. M. J. Physiol., Lond. 236, 723–731 (1974).

    Article  CAS  Google Scholar 

  14. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  15. Barrett, E. F. & Barrett, J. N. J. Physiol., Lond. 255, 737–774 (1976).

    Article  CAS  Google Scholar 

  16. Nicoll, R. A. & Alger, B. Science 210, 1122–1124 (1980).

    Article  ADS  Google Scholar 

  17. Hotson, J. R. & Prince, D. A. J. Neurophysiol. 43, 409–419 (1980).

    Article  CAS  Google Scholar 

  18. Schwartzkroin, P. A. & Stafstrom, C. E. Science 210, 1125–1126 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Shinnick-Gallaher, P., Yoshimura, M. & Gallagher, J. P. Neurosci. Abstr. 8, 555 (1982).

    Google Scholar 

  20. Cole, A. E. & Nicoll, R. A. Science (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, A., Shinnick-Gallagher, P. Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance. Nature 307, 270–271 (1984). https://doi.org/10.1038/307270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307270a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing