Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements

Abstract

It has been suggested that the middle repetitive class of sequences that make up a large proportion of the eukaryotic genome have been amplified and dispersed by DNA transposition1,2. Transposition is a phenomenon first postulated by Barbara McClintock on the basis of her genetic analysis of mutants in Zea mays3. Since then, DNA transposition has been studied genetically in various plant systems4–6 and is well documented on the molecular level in both prokaryotes and eukaryotes7. This has included the isolation of DNA inserts at various loci in several plants8–15; however, the prevalence of transposition in plants is not established. We report here DNA nucleotide sequence data which show that some members of the Cin1 middle repetitive family of maize16,17 have features characteristic of known transposable elements. One cloned Cin1 repeat has a 6-base pair (bp) perfect inverted repeat sequence at its ends. The terminal five base pairs (5′ TGTTG … CAACA 3′) are identical to the termini of Drosophila copia transposable elements18. Two other Cin1 alleles are flanked by 5-bp direct repeats. A comparison is made with the long terminal repeat (LTR) of the copia–Ty1–retrovirus families of moveable genetic elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Britten, R. J. & Davidson, E. H. Fedn Proc. 35, 2151–2157 (1976).

    CAS  Google Scholar 

  2. d'Eustachio, P. & Ruddle, F. H. Science 220, 919–924 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. McClintock, B. Carnegie Instn Wash. Yb. 45, 176 (1946).

    CAS  Google Scholar 

  4. Peterson, P. A. Theor. appl. Genet. 40, 367–377 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Fincham, J. R. S. & Sastry, G. R. K. A. Rev. Genet. 8, 15–50 (1974).

    Article  CAS  Google Scholar 

  6. Fincham, J. R. S. Genetics Suppl. 73, 195–205 (1973).

    CAS  Google Scholar 

  7. Shapiro, J. A. (ed.) Mobile Genetic Elements (Academic, New York, 1983).

  8. Saedler, H. et al. in Genetic Rearrangement, 5th John Innes Symp. (eds Chater, K. F. et al.) 107–115 (Croom Helm, London, 1983).

  9. Geiser, M. et al. EMBO J. 1, 1455–1460 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burr, B. & Burr, F. A. Cell 29, 977–986 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Strommer, J. N. et al. Nature 300, 542–544 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Goldberg, R. B., Hoschek, G. & Vodkin, L. O. Cell 33, 465–475 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Peacock, W. J. et al. in 15th Miami Winter Symp. (1983).

  14. Döring, H. P., Tillman, E. & Starlinger, P. Nature 307, 127–130 (1984).

    Article  ADS  PubMed  Google Scholar 

  15. Fedoroff, N., Wessler, S. & Shure, M. Cell 35, 235–242 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, M., Bertram, I., Shepherd, N. S. & Saedler, H. Molec. gen. Genet. 192, 373–377 (1983).

    Article  CAS  Google Scholar 

  17. Gupta, M., Shepherd, N. S., Bertram, I. & Saedler, H. EMBO J. (in the press).

  18. Levis, R., Dunsmuir, P. & Rubin, G. M. Cell 21, 581–588 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Shepherd, N. S. et al. Molec. gen. Genet. 188, 266–271 (1982).

    Article  CAS  Google Scholar 

  20. Iltis, H. H. & Doebley, J. F. Am. J. Bot. 67, 994–1004 (1980).

    Article  Google Scholar 

  21. Wilkes, H. G. Science 177, 1071–1077 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Weiss, R., Teich, N., Varmus, H. & Coffin, J. RNA Tumor Viruses (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  23. Rechavi, G., Givol, D. & Canaani, E. Nature 300, 607–611 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kuff, E. L. et al. Nature 302, 547–548 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Cole, M. D., Ono, M. & Huang, R. C. C. J. Virol. 38, 680–687 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cameron, J. R., Lok, E. Y. & Davis, R. W. Cell 16, 739–751 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Hughes, S. H., Toyoshima, K., Bishop, J. M. & Varmus, H. E. Virology 108, 189–207 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, S. D. M. Gene 23, 95–97 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Streeck, R. E. Nature 298, 767–769 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Efstratiadis, A. et al. Cell 21, 653–668 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Corden, J. et al. Science 209, 1406–1414 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Proudfoot, N. J. & Brownlee, G. G. Nature 252, 359–362 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Rosenberg, M. & Court, D. A. Rev. Genet. 13, 319–353 (1979).

    Article  CAS  Google Scholar 

  34. Lai, E. C. et al. Cell 18, 829–842 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. Varmus, H. Nature 304, 116–117 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hull, R. & Covey, S. N. Trends biol. Sci. 8, 119–121 (1983).

    Article  CAS  Google Scholar 

  37. Pfeiffer, P. & Hohn, T. Cell 33, 781–789 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Toh, H., Hayashida, H. & Miyata, T. Nature 305, 827–829 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shepherd, N., Schwarz-Sommer, Z., vel Spalve, J. et al. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements. Nature 307, 185–187 (1984). https://doi.org/10.1038/307185a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307185a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing