Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rearrangement of the oncogene c-mos in mouse myeloma NSI and hybridomas

Abstract

The activity and products of cellular oncogenes can be altered by various processes, such as the nearby integration of a retroviral genome, point mutation within the oncogene coding region, gene amplification, and chromosomal translocation (reviewed in ref. 1). Our work has provided an example of oncogene activation by yet a different process; the integration of an endogenous retrovirus-like DNA element (identified as an intracisternal A particle or IAP genome2) within the coding region of the oncogene c-mos in a mouse plasmacytoma, XRPC 243,4. The rearranged c-mos gene of XRPC24 is actively transcribed and has transforming activity3, suggesting some role for activated c-mos in the progression of the XRPC24 tumour. In this report we describe rearrangement of c-mos in a second mouse plasmacytoma, NSI, and in two hybridomas. In this case, as in XRPC24, c-mos was split by the insertion of a IAP genome. The rearranged c-mos genes (rc-mos) of NSI and XRPC24 differ in three major aspects: (1) The site of IAP integration in c-mos is in codon 30 in NSI but in codon 88 in XRPC24; (2) The orientation of the integrated IAP relative to c-mos is ‘tail-to-head’ in NSI and ‘head-to-head’ in XRPC24; and (3) transcriptional activity of rc-mos in NSI is much lower than in XRPC24. The two latter points suggest a correlation between the orientation of the long terminal repeat (LTR) of IAP relative to c-mos and its activity upon IAP integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bishop, J. M. A. Rev. Biochem. 52, 301–354 (1983).

    Article  CAS  Google Scholar 

  2. Kuff, E. L. et al. Nature 302, 547–548 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Rechavi, G., Givol, D. & Canaani, E. Nature 300, 607–611 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Canaani, E. et al. Proc. natn. Acad. Sci. U.S.A. 80, 7118–7122 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Kohler, G., Howe, S. S. & Milstein, C. Eur. J. Immun. 6, 292–295 (1976).

    Article  CAS  Google Scholar 

  6. Parhami-Seren, B., Eshhar, Z. & Mozes, E. Immunology 49, 4–19 (1983).

    Google Scholar 

  7. Van Beveren, C., van Straaten, F., Galleshaw, J. A. & Verma, I. M. Cell 27, 97–108 (1981).

    Article  CAS  Google Scholar 

  8. Reddy, E. P. et al. Proc. natn. Acad. Sci. U.S.A. 77, 5234–5238 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Van Beveren, C. et al. Nature 289, 258–262 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Gattoni-Celli, S., Hsiao, W. W.-Z. & Weinstein, I. B. Nature (this issue).

  11. Elder, R. T. Loh, E. Y. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 80, 2432–2436 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Scherer, S., Mann, C. & Davis, R. W. Nature 289, 815–819 (1982).

    Article  ADS  Google Scholar 

  13. Varmus, H. E. Science 216, 812–820 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Temin, H. M. Cell 27, 1–3 (1981).

    Article  CAS  Google Scholar 

  15. Dansmuir, P., Brorein, W. J., Simon, M. A. & Rubin, G. M. Cell 21, 575–579 (1980).

    Article  Google Scholar 

  16. Will, B. M., Bayev, A. A. & Finnegan, D. J. J. molec. Biol. 153, 897–915 (1981).

    Article  CAS  Google Scholar 

  17. Levis, R., Dunsmuir, P. & Rubin, G. M. Cell 21, 581–588 (1980).

    Article  CAS  Google Scholar 

  18. Farabaugh, P. J. & Fink, G. R. Nature 287, 352–356 (1980).

    Article  ADS  Google Scholar 

  19. Gafner, J. & Philippsen, P. Nature 286, 414–418 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Kuff, E. L. et al. Proc. natn. Acad. Sci. U.S.A. 80, 1992–1996

  21. Kuff, E. L., Smith, L. A. & Lueders, K. K. Molec. Cell Biol. 1, 216–227 (1981).

    Article  CAS  Google Scholar 

  22. Cole, M. D., Ono, M. & Huang, R. C. C. J. Virol. 42, 123–130 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  24. Smith, D. R. & Calvo, J. M. Nucleic Acids Res. 8, 2255–2274 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, J., Unger, T., Rechavi, G. et al. Rearrangement of the oncogene c-mos in mouse myeloma NSI and hybridomas. Nature 306, 797–799 (1983). https://doi.org/10.1038/306797a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306797a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing