Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patch- and voltage-clamp analysis of cyclic AMP-stimulated inward current underlying neurone bursting

Abstract

The second messenger cyclic AMP has been variously reported to affect the electrical activity of different neurones by decreasing outward potassium current1–3, increasing outward current4 and increasing inward current5–8. The recently developed patch clamp method of recording single ionic channels9 allows direct measurement of the action of cyclic AMP on membrane conductances. Using the patch clamp, the closure of potassium channels by cyclic AMP has previously been documented on the single channel level10. We report here that in a bursting molluscan neurone, intracellular iontophoresis of cyclic AMP under voltage clamp elicits an inward current of maximal amplitude in the pacemaker voltage region. Patch-clamp analysis reveals inward channels whose opening frequency is augmented by cyclic AMP stimulation and whose activity accompanies burst episodes. Channel opening frequency is significantly increased by depolarization of the whole soma, but not by focal depolarization of the patch; this may reflect the action of another second messenger that acts in concert with cyclic AMP to confer voltage sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klein, M., Camardo, J. & Kandel, E. R. Proc. natn. Acad. Sci. U.S.A. 79, 5713–5717 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Treistman, S. N. Science 211, 59–61 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Aldenhoff, J. B., Hofmeier, G. & Lux, H. D. Pflügers Arch. ges. Physiol. 382, R23 (1979).

    Google Scholar 

  4. Benson, J. A. & Levitan, I. B. Proc. natn. Acad. Sci. U.S.A. 80, 3522–3525 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Kononenko, N. I., Kostyuk, P. G. & Shcherbatko, A. D. Brain Res. 268, 321–338 (1983).

    Article  CAS  Google Scholar 

  6. Hockberger, P. & Connor, J. A. Science 219, 869–871 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Shimahara, T. & Tauc, L. Brain Res. 127, 168–172 (1977).

    Article  CAS  Google Scholar 

  8. Pellmar, T. Cell. molec. Neurobiol. 1, 87–97 (1981).

    Article  CAS  Google Scholar 

  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  10. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 413–416 (1983).

    Article  ADS  Google Scholar 

  11. Gillette, R., Gillette, M. U. & Davis, W. J. J. Neurophysiol. 43, 669–685 (1980).

    Article  CAS  Google Scholar 

  12. Gillette, R. J. Neurophys. 49, 509–515 (1983).

    Article  CAS  Google Scholar 

  13. Meyer, R. B. Jr & Miller, J. P. Life Sci. 14, 1019–1040 (1974).

    Article  CAS  Google Scholar 

  14. Connor, J. A. & Stevens, C. F. J. Physiol, Lond. 213, 21–30 (1971).

    Article  CAS  Google Scholar 

  15. Gillette, R. Soc. Neurosci. Abstr. 7, 113 (1981).

    Google Scholar 

  16. Gorman, A. L. F. & Thomas, M. V. J. Physiol., Lond. 275, 357–376 (1978).

    Article  CAS  Google Scholar 

  17. Gorman, A. L. F., Hermann, A. & Thomas, M. V. J. Physiol., Lond. 327, 185–217 (1982).

    Article  CAS  Google Scholar 

  18. Treistman, S. N. & Levitan, I. B. Nature 261, 62–64 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Maruyama, Y. & Peterson, O. H. Nature 300, 61–63 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Gillette, R., Gillette, M. U. & Davis, W. J. J. comp. Physiol. 146, 461–470 (1982).

    Article  CAS  Google Scholar 

  22. Gillette, M. U. & Gillette, R. J. Neurosci. 3, 1791–1806 (1983).

    Article  CAS  Google Scholar 

  23. Reuter, H., Stevens, C. F., Tsien, R. W. & Yellen, G. Nature 294, 501–504 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, D., Gillette, R. Patch- and voltage-clamp analysis of cyclic AMP-stimulated inward current underlying neurone bursting. Nature 306, 784–785 (1983). https://doi.org/10.1038/306784a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306784a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing