Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nerve growth factor induces adrenergic neuronal differentiation in F9 teratocarcinoma cells

Abstract

Teratocarcinoma cells have been used as a model to study differentiation and development in vertebrates1–3. Treatment with retinoic acid (RA) and dibutyryl cyclic AMP can in some embryonal carcinoma (EC) cell lines lead to neural differentiation, as judged by neurofilament expression4,5 and by the induction of enzymes involved in cholinergic transmission6,7. Short-term culture of F9 line cells with RA and dibutyryl cyclic AMP results in a biochemically demonstrable rise in acetylcholinesterase (AChE) activity8. We now report that long-term culture of F9 cells with RA and dibutyryl cyclic AMP induces neurofilament expression, demonstrated by immunofluorescence with specific antibodies. Furthermore, if nerve growth factor (NGF)9 is also added, the developing neurone-like cells exhibit immunoreactivity to tyrosine hydroxylase, a rate-limiting enzyme of catecholamine synthesis specific for adrenergic neurones10. Immunoreactivity for Leu-enkephalin-like peptides is also induced. These results suggest that F9 cells can differentiate into cells with adrenergic characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graham, C. F. in Concepts in Mammalian Embryogenesis (ed. Sherman, M. I.) 315–394 (MIT Press, Cambridge, 1977).

    Google Scholar 

  2. Jacob, F. Proc. R. Soc. B201, 241–270 (1978).

    Google Scholar 

  3. Martin, G. R. Science 209, 768–776 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Darmon, M., Buc-Caron, M.-H., Paulin, D. & Jacob, F. EMBO J. 1, 901–906 (1982).

    Article  CAS  Google Scholar 

  5. Paulin, D., Jakob, H., Jacob, F., Weber, K. & Osborn, M. Differentiation 22, 90–99 (1982).

    Article  CAS  Google Scholar 

  6. Adamson, E. D., Evans, M. J. & Magrane, G. G. Eur. J. Biochem. 79, 607–615 (1977).

    Article  CAS  Google Scholar 

  7. Pfeiffer, S. E. et al. J. Cell Biol. 88, 57–66 (1981).

    Article  CAS  Google Scholar 

  8. Kuff, E. L. & Fewell, J. W. Devl Biol. 77, 103–115 (1980).

    Article  CAS  Google Scholar 

  9. Levi-Montalcini, R. & Angeletti, P. U. Physiol. Rev. 48, 534–690 (1968).

    Article  CAS  Google Scholar 

  10. Nagatsu, T., Levitt, M. & Udenfriend, S. Biochem. biophys. Res. Commun. 14, 543–549 (1964).

    Article  CAS  Google Scholar 

  11. Wartiovaara, J., Leivo, I., Virtanen, I., Vaheri, A. & Graham, C. F. Nature 272, 355–356 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Karnovsky, M. J. & Roots, L. J. Histochem. Cytochem. 12, 219–221 (1964).

    Article  CAS  Google Scholar 

  13. Liesi, P., Dahl, D. & Vaheri, A. J. Cell Biol. 96, 920–924 (1983).

    Article  CAS  Google Scholar 

  14. Levi-Montalcini, R. & Booker, B. Proc. natn. Acad. Sci. U.S.A. 42, 384–391 (1960).

    Article  ADS  Google Scholar 

  15. Schwartz, J. & Costa, E. Brain Res. 170, 198–202 (1979).

    Article  CAS  Google Scholar 

  16. Black, I. & Kessler, J. in Neurosection and Brain Peptides (eds Martin, J. B., Reichlin, S. & Bick, K. L.) 287–297 (Raven, New York, 1981).

    Google Scholar 

  17. Thoenen, H. & Barck, Y.-A. Physiol. Rev. 60, 1284–1323 (1980).

    Article  CAS  Google Scholar 

  18. Walicke, P. A. & Pattersson, P. H. J. Neurosci. 1, 333–342 (1981).

    Article  CAS  Google Scholar 

  19. Hökfelt, T. et al. Proc. R. Soc. B210, 63–77 (1980).

    ADS  Google Scholar 

  20. Eränkö, O. A. Rev. Pharmac. 7, 203–222 (1967).

    Article  Google Scholar 

  21. Hökfelt, T., Elfvin, L.-G., Schulzberg, M., Goldstein, M. & Nilsson, G. Brain Res. 132, 29–41 (1977).

    Article  Google Scholar 

  22. Kessler, J., Adler, J., Bohn, M. & Black, I. Science 214, 335–336 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Dahl, D. & Bignami, A. J. comp. Neurol. 76, 645–658 (1977).

    Article  Google Scholar 

  24. Dahl, D. Biochim. biophys. Acta 668, 299–306 (1981).

    Article  CAS  Google Scholar 

  25. Berod, A., Hartman, B. K., Keller, A., Joh, T. H. & Pujol, J. F. Brain Res. 240, 235–243 (1982).

    Article  CAS  Google Scholar 

  26. Lamouroux, A. Proc. natn. Acad. Sci. U.S.A. 79, 3881–3885 (1981).

    Article  ADS  Google Scholar 

  27. Wharton, J. et al. Invest. Cell Path. 2, 3–10 (1979).

    MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liesi, P., Rechardt, L. & Wartiovaara, J. Nerve growth factor induces adrenergic neuronal differentiation in F9 teratocarcinoma cells. Nature 306, 265–267 (1983). https://doi.org/10.1038/306265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing