Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neuropeptides modulate the β-adrenergic response of purified astrocytes in vitro

Abstract

Neuropeptides may have functions in the central nervous system (CNS) other than altering neuronal excitability. For example, they may act as regulators of brain metabolism by affecting glycogenolysis1. Since it has been suggested that glial cells might provide metabolic support for neuronal activity2,3, they may well be one of the targets for neuropeptide regulation of metabolism. Consistent with this view are reports that peptidecontaining nerve terminals have been seen apposed to astrocytes4,5, but it is also quite possible that peptides could act at sites lacking morphological specialization6,7. Primary cultures containing CNS glial cells have been shown to respond to β-adrenergic agonists with an increase in cyclic AMP and, as a result, with an increase in glycogenolysis8,9 and have also been shown to respond to a variety of peptides with changes in cyclic AMP10–12. In the study reported here, we have examined the effects of several peptides on relatively pure cultures of rat astrocytes. We demonstrate that the increase in intracellular cyclic AMP induced by noradrenaline is markedly enhanced by somatostatin and substance P and is inhibited by enkephalin, even though these peptides on their own have little or no effect on the basal levels of cyclic AMP. Vasoactive intestinal peptide ( VIP) on the other hand increases cyclic AMP in the absence of noradrenaline. These results suggest that neuropeptides influence glial cells as well as neurones in the CNS and, in the case of somatostatin and substance P, provide further examples of neuropeptides modulating the response to another chemical signal without having a detectable action on their own.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V. & Bloom, F. E. Proc. natn. Acad. Sci. U.S.A. 78, 6535–6539 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Guth, L. & Watson, P. K. Expl Neurol. 22, 590–602 (1968).

    Article  CAS  Google Scholar 

  3. Pentreath, V. W., Seal, L. H. & Kai-Kai, M. A. Neuroscience 7, 759–767 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Barber, R. P. et al. J. comp. Neurol. 184, 331–352 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Tweedle, C. D. & Hatton, G. I. Brain Res. Bull. 8, 205–209 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Descarries, L., Watkins, K. C. & Lapierre, Y. Brain Res. 133, 197–222 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Jan, L. Y. & Jan, Y. N. J. Physiol, Lond. 327, 219–246 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Narumi, S., Kimelberg, H. K. & Bourke, R. S. J. Neurochem. 31, 1479–1490 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Cummins, C. J., Lust, W. D. & Passonneau, J. V. J. Neurochem. 40, 128–136 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Van Calker, D., Müller, M. & Hamprecht, B. Proc. natn. Acad. Sci. U.S.A. 77, 6907–6911 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Löffler, F., Van Calker, D. & Hamprecht, B. Embo J. 1, 297–302 (1982).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van Calker, D., Löffler, F. & Hamprecht, B. J. Neurochem. 40, 418–427 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. McCarthy, K. D. & de Vellis, J. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Raff, M. C. et al. Brain Res. 174, 283–308 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Bartlett, P. F. et al. Brain Res. 204, 339–351 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Wood, J. N. & Anderton, B. H. Biosci. Rep. 1, 263–268 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. Ranscht, B., Clapshaw, P. A., Price, J., Noble, M. & Seifort, W. Proc. natn. Acad. Sci. U.S.A. 79, 2709–2713 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Cailla, H. L. Analyt. Biochem. 56, 394–399 (1973).

    Article  CAS  PubMed  Google Scholar 

  19. Quach, T. T., Rose, C. & Schwartz, J. C. J. Neurochem. 30, 1335–1341 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Passonneau, J. V. & Crites, S. K. J. biol. Chem. 251, 2015–2022 (1976).

    CAS  PubMed  Google Scholar 

  21. Sutherland, E. W., Rall, T. W. & Menon, T. J. biol. Chem. 237, 1220–1227 (1962).

    CAS  PubMed  Google Scholar 

  22. Ross, E. M. & Gilman, A. G. A. Rev. Biochem. 49, 533–564 (1980).

    Article  CAS  Google Scholar 

  23. Mizobe, F., Kozousek, V., Dean, D. M. & Livett, B. G. Brain Res. 178, 555–556 (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Role, L. W., Leeman, S. E. & Perlman, R. L. Neuroscience 6, 1813–1821 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Lundberg, J. M. Acta physiol. scand. Suppl., 112, 496, 1–57 (1981).

    Article  Google Scholar 

  26. Haefely, W., Pieri, L., Polc, P. & Schaffner, R. in Handbook of Pharmacology (ed. Hoffmeister, F.) 1–483 (1980).

    Google Scholar 

  27. Stallcup, W. B. & Patrick, J. Proc. natn. Acad. Sci. U.S.A. 77, 634–638 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Lundberg, J. M., Hedland, B. & Bartfai, T. Nature 295, 147–149 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Olsen, R. W. J. Neurochem. 37, 1–13 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rougon, G., Noble, M. & Mudge, A. Neuropeptides modulate the β-adrenergic response of purified astrocytes in vitro. Nature 305, 715–717 (1983). https://doi.org/10.1038/305715a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305715a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing