Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conductance and dye permeability of a rectifying electrical synapse

Abstract

Electrical synapses provide a basis for efficient signal transmission in a wide variety of nervous systems1. These synapses are composed of specialized cell-to-cell contacts known as nexuses2 or gap junctions3 which mediate the direct transfer of ions and small molecules between adjacent cell interiors1,4 by way of intercellular channels embedded in the junctional membrane5. The crayfish giant motor synapse (CMS) was the first cell-to-cell junction clearly demonstrated to operate by an electrical mechanism6. Current applied to the presynaptic lateral giant (LG) axon or to the neurite of the postsynaptic giant flexor motoneurone (MoG) spreads passively through the synapse into the adjacent neurone6,7. Each GMS behaves like an electrical rectifier: its conductance is high when LG is positive with respect to MoG, and decreases dramatically when the sign of the trans-synaptic voltage is reversed6,7. We have now examined GMS conductance and dye permeability at thoracic and abdominal levels of the crayfish nerve cord. At both levels, values of GMS chord conductance fit a simple Boltzmann model in which the conductance of individual synaptic channels is assumed to be voltage dependent. Moreover, thoracic synapses display higher limiting conductances than do those at an abdominal level, apparently as a result of their larger size. We also find that synapses at both locations are permeable to the fluorescent dye Lucifer yellow, even in conditions where electrical conductance is low. These results provide a framework for understanding the operation and functional limits of rectifying electrical synapses, and illustrate that dye permeability can be associated even with their relatively low conductance condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bennet, M. V. L. in Handbook of Physiology, Sect. 1, 357–416 (Williams & Wilkins, Baltimore, 1977).

    Google Scholar 

  2. Dewey, M. M. & Barr, L. J. Cell Biol. 23, 553–585 (1964).

    Article  CAS  Google Scholar 

  3. Revel, J. P. & Karnovsky, J. J. J. Cell Biol. 33, C7–C12 (1967).

    Article  CAS  Google Scholar 

  4. Bennet, M. V. L. & Goodenough, D. A. Neurosci. Res. Prog. Bull. 16, 375–486 (1978).

    Google Scholar 

  5. Unwin, P. N. T. & Zampighi, G. Nature 283, 1–5 (1980).

    Article  Google Scholar 

  6. Furshpan, E. J. & Potter, D. D. Nature 180, 342–343 (1957); J. Physiol., Lond. 145, 289–325 (1959).

    Article  ADS  CAS  Google Scholar 

  7. Margiotta, J. thesis, State Univ. New York (1980).

  8. Wine, J. J., Mittenthal, J. E. & Kennedy, D. J. comp. Physiol. 93, 315–335 (1974).

    Article  Google Scholar 

  9. Stewart, W. Cell 14, 741–759 (1978).

    Article  CAS  Google Scholar 

  10. Johnson, G. E. J. comp. Neurol. 36, 323–375 (1924).

    Article  Google Scholar 

  11. Mittenthal, J. E. & Wine, J. J. Science 179, 182–184 (1973); J. comp. Neurol. 177, 311–334 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Hanna, R. B., Keeter, J. S. & Pappas, G. D. J. Cell Biol. 79, 764–773 (1978).

    Article  CAS  Google Scholar 

  13. Spray, D. C., Harris, A. L. & Bennett, M. V. L. Science 204, 432–434 (1979); J. gen. Physiol. 17, 77–93 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Jack, J. J. B., Noble, D. & Tsien, R. W. Electrical Current Flow in Excitable Cells (Oxford University Press, 1975).

    Google Scholar 

  15. Ehrenstein, G. & Lecar, H. Q. Rev. Biophys. 10, 1–34 (1977).

    Article  CAS  Google Scholar 

  16. Payton, B. W., Bennett, M. V. L. & Pappas, G. D. Science 166, 1642–1643 (1969).

    Article  ADS  Google Scholar 

  17. Warner, A. E. & Lawrence, P. A. Nature 245, 47–49 (1973); Cell 28, 243–252 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Simpson, I., Rose, B. & Loewenstein, W. R. Science 195, 294–296 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Brink, P. R. & Dewey, M. M. J. gen. Physiol. 72, 67–86 (1978).

    Article  CAS  Google Scholar 

  20. Keeter, J. S., Deschenes, M., Pappas, G. D. & Bennett, M. V. L. Biol. Bull. 147, 485–486 (1974).

    Google Scholar 

  21. Zimmerman, A. L. & Rose, B. Biophys. J. 41, 216a (1983).

    Google Scholar 

  22. Watanabe, A. & Grundfest, H. J. gen. Physiol. 45, 267–308 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margiotta, J., Walcott, B. Conductance and dye permeability of a rectifying electrical synapse. Nature 305, 52–55 (1983). https://doi.org/10.1038/305052a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing