Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic substitutions of centromeres in Saccharomyces cerevisiae

Abstract

The centromere region of yeast chromosome III has been investigated by altering it in vivo. Deleting the functional centromere (CEN3) sequence leads to extreme instability of the resulting acentric chromosome. Inversion of CEN3, or its replacement by chromosome XI centromere DNA (CEN11) has no measurable effect on the mitotic and meiotic behaviour of chromosome III, suggesting that yeast centromeres are not chromosome-specific, and are fully functional in either orientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clarke, L. & Carbon, J. Nature 287, 504–509 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Fitzgerald-Hayes, M., Buhler, J.-M., Cooper, T. & Carbon, J. Molec. Cell Biol. 2, 82–87 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stinchcomb, D. T., Mann, C. & Davis, R. W. J. molec. Biol. 158, 157–179 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Panzeri, L. & Philippsen, P. EMBO J. 1, 1605–1611 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Cell 29, 235–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Rothstein, R. J. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Stinchcomb, D. T., Struhl, K. & Davis, R. W. Nature 282, 39–43 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Barry, E. G. Genetics 71, 53–62 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Perkins, D. D. & Barry, E. G. Adv. Genet. 19, 133–285 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Hartwell, L. H., Dutcher, S. K., Wood, J. S. & Garvik, B. Rec. Adv. Yeast molec. Biol. 1 (1982).

  12. Johnson, J. R. Genet. Res. 18, 179–184 (1971).

    Article  Google Scholar 

  13. Skogerson, L., McLaughlin, C. & Wakatama, E. J. Bact. 116, 818–822 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kasha, K. J. Proc. 12th int. Congr. Genet. 1, (abstr.), 172 (1968).

    Google Scholar 

  15. Mortimer, R. K. & Hawthorne, D. C. Meth. Cell Biol. 11, 221–233 (1975).

    Article  CAS  Google Scholar 

  16. Mortimer, R. K. & Schild, D. Microbiol. Rev. 44, 519–571 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutcher, S. K. & Hartwell, L. H. Genetics 100, 175–184 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bach, M., Lacroute, F. & Botstein, D. Proc. natn. Acad. Sci. U.S.A. 76, 386–390 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Hinnen, A., Hicks, J. B. & Fink, G. B. Proc. natn. Acad. Sci. U.S.A. 75, 1929–1933 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci. U.S.A. 78, 6354–6358 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Tschumper, G. T. & Carbon, J. Gene 23, 221–232 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Reed, S. I. Gene 20, 255–265 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Rigby, P. W., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, L., Carbon, J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305, 23–28 (1983). https://doi.org/10.1038/305023a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305023a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing