Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compression, nonstoichiometry and bulk viscosity of wüstite

Abstract

Wüstite (Fe1–xO) is a complex oxide that is invariably non-stoichiometric (0.04 x 0.12). Point defects associated with this nonstoichiometry are clustered and result in a modulated crystal structure that has been extensively studied, but is not well understood1–4. Many of the properties of these compounds, such as chemical diffusivity, electrical conductivity and magnetic transitions, seem to be significantly affected by the nonstoichiometry and resulting ordering of defects5–8. We summarize here new and existing data on the elasticity of wüstite; these data indicate virtually no correlation between the bulk modulus and stoichiometry. There appears, however, to be a systematic difference between static and dynamic measurements. This behaviour suggests the presence of a frequency dependence to the bulk modulus that can be ascribed formally to a finite bulk viscosity of Fe1–xO. Such an effect has not previously been described in oxide or silicate minerals, and it is presumably caused by pressure-induced changes in defect ordering and subsequent relaxation within the incommensurate structure of wüstite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koch, F. & Cohen, J. B. Acta crystallogr. B25, 275–287 (1969).

    Article  CAS  Google Scholar 

  2. Andersson, B. & Sletnes, J. O. Acta crystallogr. A33, 268–276 (1977).

    Article  Google Scholar 

  3. Gavarri, J., Carel, C. & Weigel, D. J. Solid State Chem. 29, 81–95 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Yamamoto, A. Acta crystallogr. B38, 1451–1456 (1982).

    Article  Google Scholar 

  5. Kofstad, P. Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972).

    Google Scholar 

  6. Chen, W. K. & Peterson, N. L. J. phys. Chem. Solids 36, 1097–1103 (1975).

    Article  ADS  Google Scholar 

  7. Koch, F. B. & Fine, M. F. J. appl. Phys. 38, 1470–1471 (1966).

    Article  ADS  Google Scholar 

  8. Greenwood, N. N. in Perspectives in Mössbauer Spectroscopy (eds Cohen, S. G. & Pasternak, M.) 27–39 (Plenum, New York, 1973).

    Book  Google Scholar 

  9. Jackson, I., Liebermann, R. C. & Ringwood, A. E. Phys. Chem. Miner. 3, 11–31 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Mizutani, H., Hamano, Y. & Akimoto, S. J. geophys. Res. 77, 3744–3749 (1972).

    Article  ADS  Google Scholar 

  11. Sumino, Y., Kumazawa, M., Nishizawa, O. & Pluschkell, W. J. Phys. Earth 28, 475–495 (1980).

    Article  CAS  Google Scholar 

  12. Jeanloz, R. & Ahrens, T. J. Geophys. J. R. astr. Soc. 62, 505–528 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Hazen, R. M. Yb. Carnegie Instn Wash. 80, 277–280 (1981).

    Google Scholar 

  14. Jeanloz, R. & Sato-Soreneen, Y. EOS 63, 1097 (1982).

    Google Scholar 

  15. Clendenen, R. L. & Drickamer, H. G. J. chem. Phys. 44, 4223–4228 (1966).

    Article  ADS  CAS  Google Scholar 

  16. Will, G., Hinze, E. & Nuding, W. Phys. Chem. Miner. 6, 157–167 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Mao, H. K., Takahashi, T., Bassett, W., Weaver, J. S. & Akimoto, S. J. geophys. Res. 74, 1061–1069 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Wilburn, D. R. & Bassett, W. A. Am. Miner. 63, 591–596 (1978).

    Google Scholar 

  19. Birch, F. Phys. Rev. 71, 809–824 (1947).

    Article  ADS  CAS  Google Scholar 

  20. Zou, G. T., Mao, H. K., Bell, P. M. & Virgo, D. Yb. Carnegie Instn Wash. 79, 374–376 (1980).

    Google Scholar 

  21. Holder, J. & Granato, A. V. Phys. Rev. 182, 729–741 (1969).

    Article  ADS  CAS  Google Scholar 

  22. Holder, J. & Granato, A. V. in Physical Acoustics Vol. 8 (eds Mason, W. P. & Thurston, R. N.) 237–277 (Academic, New York, 1971).

    Google Scholar 

  23. Ludwig, W. Natn. Bur. Stand. Misc. Publ. 287, 151–156 (1966).

    Google Scholar 

  24. Pistorius, M. Z. angew. Phys. 29, 145–152 (1970).

    CAS  Google Scholar 

  25. Nowick, A. S. & Berry, B. S. Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).

    Google Scholar 

  26. Hazen, R. M., Mao, H. K., Finger, L. W. & Bell, P. M. Yb. Carnegie Instn. Wash. 80, 274–277 (1981).

    Google Scholar 

  27. Morin, F. Scripta metall. 10, 553–556 (1976).

    Article  Google Scholar 

  28. Chen, W. K. & Peterson, N. L. J. Phys. Chem. Solids 41, 335–339 (1980).

    Article  ADS  CAS  Google Scholar 

  29. Simons, B. Yb. Carnegie Instn Wash. 79, 376–380 (1980).

    Google Scholar 

  30. Hentschel, B. Z. Naturf. 25 a, 1996–1997 (1970).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeanloz, R., Hazen, R. Compression, nonstoichiometry and bulk viscosity of wüstite. Nature 304, 620–622 (1983). https://doi.org/10.1038/304620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing