Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Early pre-B cells from normal and X-linked agammaglobulinaemia produce Cμ without an attached VH region

Abstract

Differentiation of B lymphocytes follows an ordered pathway marked by somatic rearrangements of immunoglobulin heavy- and light-chain genes in conjunction with cellular transitions1–4. Although low level constitutive transcription of the μ heavy-chain constant region (Cμ) genes may occur in early precursor cells5, activation of synthesis and translation of complete μ RNA is thought to accompany somatic rearrangements of DNA6. Cytoplasmic μ-chain protein serves as a marker for pre-B cells, the earliest cells committed to differentiation into B lymphocytes4,7,8. μ-chain gene expression in pre-B cells precedes rearrangement and expression of light-chain genes6,8. We now report that early human pre-B cells, Epstein–Barr virus transformed pre-B cells, and pre-B cell hybrid analogues, produce Cμ without the normally associated heavy-chain variable (VH) region. Approximately 5% of normal pre-B cells from adult human bone marrow produce these incomplete μ-chains. Pre-B cells from three patients with X-linked agammaglobulinaemia are exclusively of this immature form, producing Cμ without associated VH. This immune deficiency disease represents a block in differentiation secondary to failure to express VH genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brack, C., Hirama, M., Lenhard-Schuller, R. & Tonegawa, S. Cell 15, 1–14 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. Cell 19, 981–992 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Perry, R., Kelley, D. & Coleclough, C. Proc. natn. Acad. Sci. U.S.A. 78, 247–251 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Cooper, M. D. J. clin. Immun. 1, 81–89 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Kemp, D., Harris, A. & Adams, J. Proc. natn. Acad. Sci. U.S.A. 77, 7400–7404 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Alt, F., Rosenberg, N., Lewis, S., Thomas, E. & Baltimore, D. Cell 27, 381–390 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Osmond, D. & Nossal, G. J. V. Cell Immun. 13, 132–138 (1974).

    Article  CAS  Google Scholar 

  8. Leavitt, D. & Cooper, M. D. Cell 19, 617–624 (1981).

    Article  Google Scholar 

  9. Schwaber, J., Lazarus, H. & Rosen, F. S. J. clin. Invest. 62, 302–310 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwaber, J., Lazarus, H. & Rosen, F. S. Proc. natn. Acad. Sci. U.S.A. 75, 2421–2423 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Schwaber, J. & Cohen, E. P. Nature 244, 444–446 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lin, L. C. & Putnam, F. Proc. natn. Acad. Sci. U.S.A. 75, 2649–2653 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Pearl, E. et al. J. Immun. 120, 1169–1181 (1978).

    CAS  PubMed  Google Scholar 

  14. Schwaber, J., Posner, M., Schlossman, S. & Lazarus, H. Hum. Immun. (in the press).

  15. Littlefield, J. W. Expl Cell Res. 41, 190–196 (1966).

    Article  CAS  Google Scholar 

  16. Davidson, R. Expl Cell Res. 55, 424–426 (1969).

    Article  CAS  Google Scholar 

  17. Pelham, H. & Jackson, R. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, P. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Alt, F. et al. Cell 20, 293–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Gough, N. & Barnard, O. Proc. natn. Acad. Sci. U.S.A. 78, 509–513 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Treisman, R., Proudfoot, N. J., Shander, M. & Maniatis, T. Cell 29, 903–911 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Weigert, M., Gatmaitan, L., Loh, E., Schilling, J. & Hood, L. Nature 276, 785–790 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Favaloro, J., Treisman, R. & Kamen, R. Meth. Enzym. 68, 718–749 (1980).

    Article  Google Scholar 

  24. Southern, E. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Walker, I. & Harris, A. Nature 288, 290–293 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Walker, I. & Harris, A. J. Immun. 127, 561–566 (1981).

    CAS  PubMed  Google Scholar 

  27. Croce, C. et al. Proc. natn. Acad. Sci. U.S.A. 76, 3416–3419 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Schwaber, J. & Rosen, F. S. J. clin. Immun. 2, 30–34 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Laemmli, U. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Maizel, J. Methods in Virology Vol. 5 179–246 (Academic, New York, 1969).

    Google Scholar 

  31. Chirgwin, J., Przybyla, A., MacDonald, R. & Rutter, W. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Challberg, & Englund, P. Meth. Enzym. 65, 39–42 (1980).

    Article  CAS  PubMed  Google Scholar 

  33. Denhardt, D. T. Biochem. biophys. Res. Commun. 23, 641–647 (1966).

    Article  CAS  PubMed  Google Scholar 

  34. Orkin, S. H. Proc. natn. Acad. Sci. U.S.A. 75, 5950–5954 (1978).

    Article  ADS  CAS  Google Scholar 

  35. Chaconas, G. & van de Sande, J. Meth. Enzym. 65, 75–85 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–559 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwaber, J., Molgaard, H., Orkin, S. et al. Early pre-B cells from normal and X-linked agammaglobulinaemia produce Cμ without an attached VH region. Nature 304, 355–358 (1983). https://doi.org/10.1038/304355a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304355a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing